AERC 2
Procedures for Determining Heating and Cooling Annual Energy Performance Ratings of Fenestration Attachments

Published by
Attachments Energy Rating Council
355 Lexington Avenue, New York, New York, 10017
Copyright © 2017 by the Attachments Energy Rating Council
Not to be reproduced without
specific authorization from AERC
Printed in the USA

Foreword

The Attachments Energy Rating Council (AERC) is an independent, public interest, non-profit organization whose mission is to develop and maintain a program to allow participants to rate, label, and certify the performance of fenestration attachments.

The companion document AERC 1 provides the main technical rating procedures to determine the energy performance properties (U-factor, SHGC, VT, and Air Leakage) of fenestration attachments installed in combination with standardized baseline windows and skylights under standardized conditions. This document, AERC 2, provides the procedures to determine the corresponding annual energy performance ratings for fenestration attachments when used in a model residential house: Energy Performance Index for heating, EP ${ }_{\mathrm{H}}$, and Energy Performance Index for cooling, EPc. AERC 1 and AERC 2 are supported by AERC 1.1 which provides the technical procedures for determining material property inputs (optical and thermophysical properties), and AERC 1.2 which provides physical testing procedures. The energy performance ratings determined by these technical procedures are designed to be used in conjunction with AERC's labeling and certification program, as detailed in AERC 100 National Standard for Rating the Energy Performance of Fenestration Attachments.

The attachment product types currently covered by this standard are listed in Section 2. Other product types such as louvered shutters, roman shades, drapes, and sheer shades may be added in future versions of the standard as technical procedures are developed.

1. Introduction

The purpose of this standard is to provide the standard procedures to determine the annual energy performance ratings for fenestration attachments when used in a model residential house: Energy Performance Index for heating, EP_{H}, and Energy Performance Index for cooling, EPc. The impact of the fenestration attachment product upon the energy usage of a model residential house is calculated in a heating-dominated and a cooling-dominated location under changing hourly weather conditions using AERCalc (Annual Energy Rating Calculation), a software tool developed by Lawrence Berkeley National Laboratory based on the EnergyPlus annual energy simulation engine. The results are standardized in dimensionless energy performance indices $E P_{\boldsymbol{H}}$ and $E P_{c}$ which represent the impact of using the fenestration attachment product on the annual heating and cooling energy performance of the window and house, allowing a standardized comparison of different attachment products. Specifically, EP_{H} and $E P_{c}$ are defined as the ratio of annual HVAC heating or cooling energy saving resulting from the addition of a fenestration attachment to the annual energy use caused by the fenestration in the house without the attachment, multiplied by 100. Therefore,

- An EP less than zero means the attachment has a negative impact on the energy performance of the fenestration.
- An EP of zero has neither a negative nor positive impact on the energy performance of the fenestration.
- An EP between 1 and 100 means the attachment has a positive impact on the energy performance of the fenestration, with higher EP indicating higher energy savings.
- An EP greater than 100 means the attachment and fenestration system is a net-energy producer on an annual basis compared to an adiabatic window.

This standard is intended to work in conjunction with AERC 1 Procedures for Determining Energy Performance Properties of Fenestration Attachments, which specifies the technical rating procedures to determine the overall heat transfer coefficient (U-factor), solar heat gain coefficient (SHGC), visible transmittance (VT), and air leakage (AL) for fenestration attachments installed in combination with standardized baseline windows and skylights under standardized conditions. AERC 1 provides the methodology to determine and report these properties as single values under static, standardized conditions, but also provides the detailed input data to AERC 2 and AERCalc that allow calculation of annual energy performance under dynamic conditions (changing hourly weather conditions that include varying angles of solar incidence, exterior temperatures, wind speeds, and interior conditions).

2. Scope

This standard shall apply to interior and exterior fenestration attachments, defined as products attached to fenestration, or attached to or near the perimeter of the inner or outer wall surrounding fenestration.

The technical procedures of this standard apply to the following fenestration attachment product types:

- Cellular Shades
- Slat Shades
- Roller Shades
- Residential Secondary Windows including Storm Windows and Window Panels
- Pleated Shades
- Solar Screens
- Surface Applied Films
- Exterior Roller Shutters
- Awnings
- Window Quilts

This standard does not apply to or address:

- Primary fenestration inclusive of windows, doors, and skylights.
- Fenestration attachments over windows or doors in interior walls of buildings and not part of the thermal envelope of the building.
- Changes in performance over time of fenestration attachments or the windows, doors, and skylights over which they are installed.
- Changes in performance using conditions other than the standardized environmental, model house, and baseline window conditions specified in this document.
- Actual energy performance in any specific building or application, which will vary due to differences in location, construction, building and product use, microclimate, year-toyear weather conditions, etc.

3. Referenced Documents and Standards

AERC 1 Revision 7 (2020) - Procedures for Determining Energy Performance Properties of Fenestration Attachments, Attachments Energy Rating Council, New York NY, www.aercnet.org.

AERC 1.1 Revision X (2019) - Procedures for Determining the Optical and Thermal Properties of Window Attachment Materials, Attachments Energy Rating Council, New York NY, www.aercnet.org.

AERC 1.2 Revision 2 (2019), Physical Test Methods for Measuring Energy Performance Properties of Fenestration Attachments, Attachments Energy Rating Council, New York NY, www.aercnet.org.

AERC 400, Policy and Procedures, Attachments Energy Rating Council, New York NY, 2019, www.aercnet.org.

AERCalc, Lawrence Berkeley National Laboratory, Berkeley CA, 2017.
https://windows.lbl.gov/software/
AERC 1.3-2020, AERC Simulation Manual, Lawrence Berkeley National Laboratory, Berkeley CA, 2020.

Complex Glazing Database (CGDB), Lawrence Berkeley National Laboratory, Berkeley CA, 2019. https://windows.lbl.gov/software/

Certified Product Database (CPD), Attachments Energy Rating Council, New York NY, 2019, www.aercnet.org.
"Energy Performance Indices EPC and EP ${ }_{H}$ - Calculation Methodology and Implementation in Software Tool", Lawrence Berkeley National Laboratory, Berkeley CA, 2020.
"Modeling Procedure for Window Awnings", Lawrence Berkeley National Laboratory, Berkeley CA, 2020.

IEEE/ASTM SI 10-2010, American National Standard for Metric Practice, ASTM International, West Conshohocken PA, 2010, www.astm.org.

International Glazing Database (IGDB), Lawrence Berkeley National Laboratory, Berkeley CA, 2019. https://windows.lbl.gov/software/

THERM 7, Lawrence Berkeley National Laboratory, Berkeley CA, 2019. https://windows.lbl.gov/software/

WINDOW 7, Lawrence Berkeley National Laboratory, Berkeley CA, 2019. https://windows.lbl.gov/software/

4. Terminology

4.1. Definitions

See AERC 400 Appendix A. Where there is a difference in definition between AERC 400 Appendix A and other reference documents, the definition from AERC 400 shall take precedence.

4.2. Acronyms

AERC Attachments Energy Rating Council
AL Air leakage
CPD Certified product database
CGDB Complex glazing database
$E P_{H} \quad$ Energy Performance Index for heating
EPC Energy Performance Index for cooling
IGDB International glazing database
SHGC Solar heat gain coefficient
VT Visible transmittance

5. Technical Procedures

This section provides the standard procedures to determine the annual energy performance ratings for fenestration attachments when used in a model residential house: Energy Performance Index for heating, EP_{H}, and Energy Performance Index for cooling, EPC.

5.1. Definition of Energy Performance Indices

The Energy Performance Index is defined as the ratio of annual HVAC heating or cooling energy saving resulting from the use of the fenestration attachment product to the annual energy use caused by the baseline fenestration in the standardized model house without the attachment, multiplied by 100 :

$$
E P=\frac{E_{B-S}}{E_{B-A}} \times 100
$$

where
$E P=$ energy performance index for either heating ($E P_{H}$) or cooling ($E P_{C}$).
$E P_{H}$ is calculated in a heating-dominated climate (Minneapolis, MN).
$E P_{c}$ is calculated in a cooling-dominated climate (Houston, TX).
$E_{B-A}=E_{B}-E_{A}$, annual heating or cooling energy use caused by the baseline window, compared to an adiabatic window
$E_{S-A}=E_{s}-E_{A}$, annual heating or cooling energy use caused by the baseline window with the fenestration product attachment, compared to an adiabatic window
$E_{B-S}=E_{B}-E_{S}$, annual heating or cooling energy savings from using the fenestration attachment product over the baseline window
and
$\mathrm{E}_{\mathrm{A}}=$ annual HVAC cooling or heating energy use of the model house with adiabatic windows (windows replaced with adiabatic surfaces with zero heat flux)
$\mathrm{E}_{\mathrm{B}}=$ annual HVAC cooling or heating energy use of the model house with baseline windows only
E_{s} = annual HVAC cooling or heating energy use of the model house with baseline windows with the fenestration product attachment.

The A, B, and S conditions for the model house are shown schematically in Figure 1.

Figure 1. Schematic of three different model house cases
In general,

- An EP less than zero means the attachment has a negative impact on the energy performance of the baseline fenestration.
- An EP between 0 and 100 means the attachment has a positive impact on the energy performance of the baseline fenestration, with higher EP indicating higher energy savings.
- An EP greater than 100 means the attachment and fenestration system is a net-energy producer on an annual basis compared to an adiabatic window.

5.2. Energy Performance Calculation

$E P_{H}$ and $E P_{C}$ shall be calculated for each fenestration attachment product using the currently approved Lawrence Berkeley National Laboratory AERCalc software tool and the AERC 1.3 Simulation Manual.

Full details on the AERCalc calculation methodology and Energy Plus runs are provided in "Energy Performance Indices $E P_{C}$ and $E P_{H}$-Calculation Methodology and Implementation in Software Tool", Lawrence Berkeley National Laboratory, 2020, reproduced in Appendix A,
and "Modeling Procedure for Window Awnings", Lawrence Berkeley National Laboratory, Berkeley CA, 2020, reproduced in Appendix H.

5.2.1. Standardized Conditions

Standardized assumptions for the model home and baseline windows are provided in "Energy Performance Indices $E P_{C}$ and $E P_{H}$ - Calculation Methodology and Implementation in Software Tool", Lawrence Berkeley National Laboratory, 2020, reproduced in Appendix A, and "Modeling Procedure for Window Awnings", Lawrence Berkeley National Laboratory, Berkeley CA, 2020, reproduced in Appendix H.

The Energy Performance Index for heating, EP_{H}, is calculated for the model house in a heating-dominated climate, using TMY3 weather data for Minneapolis-St Paul International Airport (WMO\# 726580).

The Energy Performance Index for cooling, EP_{c}, is calculated for the model house in a cooling-dominated climate, using TMY3 weather data for Houston-Bush Intercontinental Airport (WMO\# 722430).

5.2.2. Product Input Data

Prior to calculation of $E P_{H}$ and $E P_{c}$ for a fenestration attachment product, the energy performance properties of the fenestration attachment product shall be determined in accordance with AERC 1.

5.2.2.1. Thermal and Solar-Optical Input Properties

Thermal and solar-optical input properties that impact the annual energy calculation are imported from the currently approved Lawrence Berkeley National Laboratory WINDOW / THERM software tools in accordance with AERC 1, the AERC 1.3 Simulation Manual, and the AERCalc user manual. For products with only tested properties for U-factor or SHGC, see Section 5.2.2.3.

Different fenestration attachment product types have a different number of degrees of freedom for operation (e.g. retraction, slat angle). As detailed in Appendix A, AERCalc conducts a different number of EnergyPlus runs for each product type based upon the degrees of freedom and deployment schedule, and requires a different number of input files from WINDOW simulations. Table 1 gives a summary of the combined number of WINDOW simulations required for AERC 1 and AERC 2 for each fenestration attachment product type, and operation schedules are defined in Appendix A and Appendix H. Product types and the meaning of "fully open" or "fully retracted" and "fully closed" or "fully deployed" for each product type are defined in Section 5.2 of AERC 1.

Table 1. WINDOW simulations required by AERC 1 and AERC 2 for different fenestration attachment product types.

Product Type	AERCalc naming code	Degrees of freedom	WINDOW simulations

Cellular shades	CS	1	2: fully open, fully closed
Slat shades*	VB and VL*	2	5: fully open, fully closed, deployed with horizontal 0° slat angle, deployed with -45° slat angle, deployed with $+45^{\circ}$ slat angle
Roller shades	RS	1	2: fully open, fully closed
Storm Windows \& Window Panels	WP	0	1: fully closed
Pleated Shades	PS	1	2: fully open, fully closed
Solar Screens	SS	0	1: fully closed
Applied Films	AF	0	1
Awnings - fixed	AY1A, AY1B, AY2A, AY2B, AS1A, AS1B, AS2A, AS2B	0	1: fully deployed or midpoint deployed geometry as specified in AERC 1 (The seasonally installed fixed awnings schedule also uses uninstalled position with properties of baseline window.)
Awnings -	AO1A, AO1B, AO2A, AO2B	1	2: fully deployed, midpoint deployed (fully retracted / unshaded position uses properties of baseline window).

* For the naming convention used in AERCalc for importing input files from WINDOW, slat shades with horizontal slats/vanes shall be named as Venetian Blinds, and slat shades with vertical slats/vanes shall be named as Vertical Louvers.
See AERC 1.3 Simulation Manual.

5.2.2.2. Air Leakage

Air infiltration of the attachment product and baseline window must also be provided as an input parameter for EnergyPlus runs in the AERCalc annual energy performance calculation.

- Where air leakage (AL) is determined for a fenestration attachment product in accordance with Section 5.1.5 of AERC 1, the reported AL value in $\mathrm{L} / \mathrm{s} / \mathrm{m}^{2}$ ($\mathrm{cfm} / \mathrm{ft}^{2}$) shall be used in AERCalc.
- Where AL is not required and not determined in accordance with AERC 1 for a fenestration attachment product, a default value the same as the baseline window air infiltration shall be used.

5.2.2.3. Test-Only Products

Currently, EP_{H} and EP_{C} cannot be calculated using AERCalc for fenestration attachment products that do not have WINDOW / THERM input files and use the test option for U-factor or SHGC in Sections 5.1.2.2 and 5.1.3.2 of AERC 1.

AERC 100 provides for these products to be certified and listed for U-factor, SHGC, VT , and AL , and the ability to determine $E P_{H}$ and $E P_{\mathrm{C}}$ may be added in future versions of the standard as technical procedures are developed.

6. Reporting

The following information shall be reported:

- Product manufacturer
- Product type, identification, drawings, and materials
- Simulation laboratory
- Date of report
- $E P_{H}$ and $E P_{\text {c }}$ rounded and reported to integer values. Rounding shall be in accordance with IEEE/ASTM SI 10-2010.
- Products grouped in accordance with AERC 1, if applicable.
- All other information required for inclusion in the certified product database in accordance with AERC 100 and AERC 400 Appendix G (Approved Software and Manuals).

Appendix A - AERCalc Calculation Methodology

(Reproduced from "Energy Performance Indices $E P_{C}$ and $E P_{H}$ - Calculation Methodology and Implementation in Software Tool", Lawrence Berkeley National Laboratory, Berkeley CA, 2020.)

Energy Technologies Area

Energy Performance Indices EPc and EP ${ }_{H}$ Calculation Methodology and Implementation in Software tool

Prepared by: Jinqing Peng, D. Charlie Curcija

Lawrence Berkeley National Laboratory

Date: 4/28/2017

1. INTRODUCTION \& BACKGROUND

Energy performance indices, EPc and EP_{H} of window attachments are developed on the basis of ISO 18292 standard (ISO 2011), which gives methodology for calculating heating and cooling energy performance of windows. This methodology is based on the results of energy simulation of a typical residential building (house) in a typical cooling and heating climate.

2. Derivation of Energy Performance Index

For the purpose of calculating energy performance indices of window attachments, Houston climate was selected for cooling performance index, EPc and Minneapolis was selected for heating energy performance index, ЕРн. Energy simulation is done using subhourly energy analysis program EnergyPlus (DOE 2016). Three different cases are simulated:
A. Typical house with windows replaced by adiabatic surfaces (i.e., zero heat flux through window surfaces)
B. Typical house with baseline windows
S. Typical house with baseline windows and window shade/attachment over them

Figure 1. Schematic of three different house models

Energy simulation is done over the typical TMY3 year for each location and results of energy for each case are expressed as:

EA: annual HVAC cooling or heating energy use of the house with "adiabatic" window
Eв: annual HVAC cooling or heating energy use of the house with baseline window only
Es: annual HVAC cooling or heating energy use of the house with window attachment.
Based on the results of energy simulation, the following quantities are calculated:
$E_{B-A}=E_{B}-E_{A}$, annual energy use caused by the baseline window
$E_{B-s}=E_{B}-E_{s}$, window attachment energy savings vs. the baseline window
Energy performance indices of window attachments, EP_{c}, and ЕРн are defined as the ratio of annual cooling/heating energy saving resulting from the addition of window attachment to the annual energy use caused by the baseline window without attachment.

$$
\begin{align*}
& E P_{C}=\frac{\left(E_{B-S}\right)_{\text {Houston }}}{\left(E_{B-A}\right)_{\text {Houston }}} \tag{1}\\
& E P_{H}=\frac{\left(E_{B-S}\right)_{\text {Minneapolis }}}{\left(E_{B-A}\right)_{\text {Minneapolis }}} \tag{2}
\end{align*}
$$

Typical house is defined from the DOE standard residential building model, combining several building vintages into a single typical house. The listing of assumptions is detailed in Appendix A.

Energy plus runs for both Baseline and Adiabatic runs are performed once for each climate, making for four sets of results (two for heating and two for cooling EP) and saved as fixed information.

EnergyPlus model for the house with baseline windows, $\mathrm{E}_{\boldsymbol{B}}$ is run using Autosize option for HVAC. This is done once for cooling and once for heating climates. Such calculated HVAC size is then fixed for all subsequent runs, including adiabatic and attachment cases. Baseline windows run is detailed in section 1.1.

EnergyPlus model of a house with window attachment is run at least once per product for fixed attachments (i.e., window panels, solar screens, surface-attached films), two times for 1-D operation shades (e.g., roller shades, cellular shades, pleated shades, roman shades, etc.), where one run is for shade fully closed and second run is for shade half closed (fully retracted option is identical to baseline window); and 7 runs for 2-D operation shades (venetian blinds, vertical blinds, etc.). More details are provided in section 1.3.

3. EnergyPlus Runs

Energy analysis is done using EnergyPlus simulation tool and IDF input file for EnergyPlus simulation is created from the collection of include files (*.inc). The reason for splitting IDF files in several include files is that for different runs, only individual include file would be replaced. The list of include files in following sections are marked in green, yellow, and red, signifying how these files are set. Green colored include files are fixed and are used in each case, $\mathrm{E}_{\mathrm{A}}, \mathrm{E}_{\mathrm{B}}$, and Es. Yellow colored include files are fixed, but are inserted based on the case being run. Red colored include files are specific to each window attachment and are prepared on the fly. More details about include files are provided in Appendix C.
Besides IDF files for each run, energy simulation also requires weather data file (TMY3 file). The weather data file names for these two climates are listed below:

- Houston: USA_TX_Houston-Bush.Intercontinental.AP.722430_TMY3.epw
- Minneapolis: USA_MN_Minneapolis-St.Paul.Intl.AP.726580_TMY3.epw

3.1 Adiabatic Windows Run

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_adiabatic_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_adiabatic_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_adiabatic.inc

3.2 Baseline Windows Run

For the baseline window run, the following include files are provided.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_baseline_Houston.inc
- System_autosize_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_baseline_Minneapolis.inc
- System_autosize_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_baseline.inc

3.3 Windows with Attachments

Window construction include files for windows with attachments are first defined for each window attachment in WINDOW software tool and exported as IDF file. While most of window attachments have single degree of freedom in operation (retraction operation only) or 0 degree of freedom (fixed window attachments) and therefore have single construction description for its deployed position, some attachments have 2 degrees of freedom (e.g., louvered shades), resulting in 4 window construction records:

1) horizontal slats, or 0 deg
2) closed slats, or 90 deg
3) -45 deg
4) 45 deg

Depending on the degree of freedom for window attachments, different number of EnergyPlus runs will be required. Table 1 gives summary for each window attachment class/type.

Table 1. Simulation runs for different deployment situation of each shade

Shade Type	Degrees of freedom	 bottom window w/ shade)	Half Deployed (only top window w/ shade)	Total runs
Roller shades	1	1 run	1 run	2
Cellular shades	1	1 run	1 run	2
Solar Screens	0	1 run	--	1
Applied Films	0	1 run	--	1
Venetian Blinds	2	4 runs	3 runs	7
Vertical Blinds	2	4 runs	3 runs	7
Window panels	0	1 run	--	1
Pleated Shades	1	1 run	1 run	2

3.3.1 Fully Deployed Window Attachments Runs

The include files needed for fully deployed window attachments run are listed below.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_user_input_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_user_input_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- 1D window attachments: Window_construction_user_input.inc
- 2D window attachments - louvered blinds:
- Window_ construction_user_input0.inc
- Window_ construction_user_input90.inc
- Window_ construction_user_input-45.inc
- Window_ construction_user_input+45.inc

3.3.2 Half-Deployed Window Attachments Runs

The include files needed for half-deployed window attachments run are listed below.

Houston:

- AERC_Base_Building_Houston.inc
- Air_infiltration_baseline_Houston.inc
- System_sizing_Houston.inc

Minneapolis:

- AERC_Base_Building_Minneapolis.inc
- Air_infiltration_baseline_Minneapolis.inc
- System_sizing_Minneapolis.inc

Both climate zones:

- Window_configuration.inc
- Window_construction_baseline.inc
- 1D window attachments: Window_construction_user_input.inc
- 2D window attachments - louvered blinds:
- Window_ construction_user_input0.inc
- Window_ construction_user_input90.inc
- Window_ construction_user_input-45.inc
- Window_ construction_user_input+45.inc

4. Calculation of Energy Use

Energy use for each case is calculated from HVAC system results of EnergyPlus simulation. Instructions for generating correct output results are provided in include file EP_Output_Fields.inc, shown in Appendix B. Results are stored in IDF_input_file_name.csv file. The following output fields are used in calculation of energy use:

Houston:

- "CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)"
- "CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly)".

Minneapolis:

- "CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)"
- "CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly)".

For brevity and subsequent use in equations, the following nomenclature will be used:
$E_{D X} \operatorname{Coil}\left(\tau_{h}\right)=$ CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)
$E_{\text {Fan }}\left(\tau_{h}\right)=$ CENTRAL SYSTEM_UNIT1:Air System Fan Electric Energy [J](Hourly) $E_{G a s}\left(\tau_{h}\right)=$ CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)

Total energy, required for the calculation of $\mathrm{EA}_{\mathrm{A}}, \mathrm{E}_{\text {в, and }}$ Es is calculated by summing up all hours when cooling system is on ($\mathrm{CS}=\mathrm{ON}$) in Houston and when heating system is on ($\mathrm{HS}=\mathrm{ON}$) in Minneapolis. "CS=ON" when "CENTRAL SYSTEM_UNIT1: Air System DX Cooling Coil Electric Energy [J](Hourly)", is larger than 0. Correspondingly, "HS=ON" when "CENTRAL SYSTEM_UNIT1: Air System Gas Energy [J](Hourly)", is larger than 0. The energy totals are also corrected to source energy using following conversion factors:
$S F_{E}=$ conversion factor from electricity to source energy in GJ, 3.167-10-9
$S F_{G}=$ conversion factor from natural gas to source energy in GJ, 1.084•10-9

4.1 Adiabatic Windows Runs

The energy use for adiabatic window runs are calculated from output of EnergyPlus simulation for adiabatic window case and normalized using source energy correction, which is applied to selected energy contributions.

Houston:

$$
\begin{equation*}
E_{A}=\left(\sum_{C S=O N} E_{D X C o i l}\left(\tau_{h}\right)_{A}+\sum_{C S=O N} E_{F a n}\left(\tau_{h}\right)_{A}\right) \cdot S F_{E} \tag{3}
\end{equation*}
$$

Minneapolis:

$$
\begin{equation*}
E_{A}=\left(\sum_{H S=O N} E_{G a s}\left(\tau_{h}\right)_{A}\right) \cdot S F_{G}+\left(\sum_{H S=O N} E_{F a n}\left(\tau_{h}\right)_{A}\right) \cdot S F_{E} \tag{4}
\end{equation*}
$$

The resulting energy use EA is expressed in GJ of source energy. EA for both locations is calculated once and saved for the calculation of EP.

4.2 Baseline Windows Runs

The energy use for baseline window runs are calculated from output of EnergyPlus simulation for baseline window case and normalized using source energy correction, which is applied to selected energy contributions.

Houston:

$$
\begin{equation*}
E_{B}=\left(\sum_{C S=O N} E_{D X C o i l}\left(\tau_{h}\right)_{B}+\sum_{C S=O N} E_{F a n}\left(\tau_{h}\right)_{B}\right) \cdot S F_{E} \tag{5}
\end{equation*}
$$

Minneapolis:

$$
\begin{equation*}
E_{B}=\left(\sum_{H S=O N} E_{G a s}\left(\tau_{h}\right)_{B}\right) \cdot S F_{G}+\left(\sum_{H S=O N} E_{\text {Fan }}\left(\tau_{h}\right)_{B}\right) \cdot S F_{E} \tag{6}
\end{equation*}
$$

The resulting energy use E_{B} is expressed in GJ of source energy. Eв for both locations is calculated once and saved for the calculation of EP.

4.3 Windows with Attachments Runs

Energy uses for windows with attachments are done on demand for each attachment for which EP is calculated. Depending on the attachment type, different level of calculation is done. Details of these calculations for different attachment types are provided below.

4.3.1 Fixed Attachments

For fixed attachments (i.e., non-operable), single and non-weighted calculation is done, similar to cases of adiabatic and baseline window energy use calculations:

Houston:

$$
\begin{equation*}
E_{S}=\left(\sum_{C S=O N} E_{D X C o i l}\left(\tau_{h}\right)_{S}+\sum_{C S=O N} E_{\text {Fan }}\left(\tau_{h}\right)_{S}\right) \cdot S F_{E} \tag{7}
\end{equation*}
$$

Minneapolis:

$$
\begin{equation*}
E_{S}=\left(\sum_{H S=O N} E_{G a s}\left(\tau_{h}\right)_{S}\right) \cdot S F_{G}+\left(\sum_{H S=O N} E_{\text {Fan }}\left(\tau_{h}\right)_{S}\right) \cdot S F_{E} \tag{8}
\end{equation*}
$$

The resulting energy use Es is expressed in GJ of source energy.

4.3.2 Operable Window Attachments with 1-D operation

For these window attachment types, the operation consists of attachment retraction to various degrees. The deployment schedule for operable window attachments, was developed from the results of a behavioral study (DRI 2013). Based on the results of the survey of 2,467 households in 12 markets, a deployment schedule was developed for 3 periods during the day, two periods during the week, and for two seasons. The behavioral study considered three different attachment deployments and identified the percentage of products that were in one of these three positions at different times of day, week and season.

The deployment positions of window attachments considered were:

1. O: Open (Baseline window runs)
2. H: Half-Open (Half-Deployed window attachment runs)
3. C: Closed (Fully-Deployed window attachment runs)

The periods of day considered were:

1. M: Morning, including work hours (6:00 a.m. to 12:00 p.m.)
2. A: Afternoon (12:00 p.m. to 6:00 p.m.)
3. \mathbf{N} : Evening/Night (6:00 p.m. to 6.00 a.m. of next day)

The periods of week considered were:

1. D: Weekday
2. E: Weekend and holidays

Note: Each weather data file contains standard US holidays, which are assigned the weekend schedule in the EnergyPlus input.

Time-weighting of energy use is done in addition to the consideration when cooling or heating system is on, to calculate Es. In order to describe the weighting calculation methodology, indices for hourly, daily, and weekly periods are used. Hourly energy values are labeled using τ_{h}. Different day in a week (i.e., weekday vs. weekends and holidays) is labeled using index τ_{d}, and different week in a season is labeled using index τ_{w}. Using this notation, the following equations are used to calculate weighted source energy use from operable window shades with 1 degree of freedom:

$$
\begin{equation*}
E_{S}=E_{O}+E_{H}+E_{C} \tag{9}
\end{equation*}
$$

Where:

$$
\begin{align*}
& E_{O}=\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D O}\left(\tau_{w}\right)+E_{S E O}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{W_{N}}\left(E_{W D O}\left(\tau_{w}\right)+E_{W E O}\left(\tau_{w}\right)\right) \tag{10}\\
& E_{H}=\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D H}\left(\tau_{w}\right)+E_{S E H}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{W_{N}}\left(E_{W D H}\left(\tau_{w}\right)+E_{W E H}\left(\tau_{w}\right)\right) \tag{11}\\
& E_{C}=\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D C}\left(\tau_{w}\right)+E_{S E C}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{w_{N}}\left(E_{W D C}\left(\tau_{w}\right)+E_{W E C}\left(\tau_{w}\right)\right) \tag{12}
\end{align*}
$$

Where (Equations 5-16):

$$
\begin{aligned}
& E_{S D O}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{S D M O} \cdot \sum_{\tau_{h}=6}^{12} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S D A O} \cdot \sum_{\tau_{h}=12}^{18} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S D N O} \cdot \sum_{\tau_{h}=18}^{6(+ \text { +1day })} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{S E O}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{S E M O} \cdot \sum_{\tau_{h}=6}^{12} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E A O} \cdot \sum_{\tau_{h}=12}^{18} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E N O} \cdot \sum_{\tau_{h}=18}^{6(+1 d a y)} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{\text {WDO }}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{\text {WDMO }} \cdot \sum_{\tau_{h}=6}^{12} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {WDAO }} \cdot \sum_{\tau_{h}=12}^{18} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {WDNO }} \cdot \sum_{\tau_{h}=18}^{6(+ \text { 1day })} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{W E O}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{W E M O} \cdot \sum_{\tau_{h}=6}^{12} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E A O} \cdot \sum_{\tau_{h}=12}^{18} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E N O} \cdot \sum_{\tau_{h}=18}^{6(+ \text { 1day })} E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{S D H}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{S D M H} \cdot \sum_{\tau_{h}=6}^{12} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S D A H} \cdot \sum_{\tau_{h}=12}^{18} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S D N H} \cdot \sum_{\tau_{h}=18}^{6(+ \text { dady })} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{S E H}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{S E M H} \cdot \sum_{\tau_{h}=6}^{12} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E A H} \cdot \sum_{\tau_{h}=12}^{18} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E N H} \cdot \sum_{\tau_{h}=18}^{6++ \text { +day })} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{\text {WDH }}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{\text {WDMH }} \cdot \sum_{\tau_{h}=6}^{12} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {WDAH }} \cdot \sum_{\tau_{h}=12}^{18} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {WDNH }} \cdot \sum_{\tau_{h}=18}^{6(+1 d a y)} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{W E H}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{W E M H} \cdot \sum_{\tau_{h}=6}^{12} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{\text {WEAH }} \cdot \sum_{\tau_{h}=12}^{18} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E N H} \cdot \sum_{\tau_{h}=18}^{6(+1 \text { daay })} E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{S D C}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{S D M C} \cdot \sum_{\tau_{h}=6}^{12} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S D A C} \cdot \sum_{\tau_{h}=12}^{18} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S D N C} \cdot \sum_{\tau_{h}=18}^{6(+ \text { +1day })} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{S E C}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{S E M C} \cdot \sum_{\tau_{h}=6}^{12} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E A C} \cdot \sum_{\tau_{h}=12}^{18} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E N C} \cdot \sum_{\tau_{h}=18}^{6(+ \text { 1day })} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& E_{S W C}\left(\tau_{w}\right)=\sum_{\tau_{d}=1}^{5}\left(F_{W D M C} \cdot \sum_{\tau_{h}=6}^{12} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W D A C} \cdot \sum_{\tau_{h}=12}^{18} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W D N C} \cdot \sum_{\tau_{h}=18}^{6(+1 d a y)} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right) \\
& E_{W E C}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{W E M C} \cdot \sum_{\tau_{h}=6}^{12} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E A C} \cdot \sum_{\tau_{h}=12}^{18} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{W E N C} \cdot \sum_{\tau_{h}=18}^{6(+1 d a y)} E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right)
\end{aligned}
$$

Where:
$\tau_{d}=$ days of the week, where $1=$ Monday, and 7=Sunday. The weekend schedule is also applicable to holidays
$\tau_{\mathrm{w}}=$ weeks of the year, where $S_{1}=$ first week of the cooling season, and $S_{N}=$ last week of the cooling season, $W_{1}=$ first week of the heating season, and $W_{N}=$ last week of the heating season. S1, SN, W1, and WN are defined in Appendix D.
$\tau_{\mathrm{h}}=$ hours in a day, where 1=1:00 a.m., $12=12: 00$ p.m., and $24=12: 00 \mathrm{a} . \mathrm{m}$. For the evening/night period, the summation goes from 18 (6:00 p.m.) until 24 (12 a.m.), then the hours reset to 0 and go until 6 a.m. This is indicated in the equations as (+1 day) in the upper limit of the summation sign for the evening/night period
Table 2. Energy Use Variables

	Cooling Weekday	Cooling Weekend	Heating Weekday	Heating Weekend
Open	$E_{S D O}$	$E_{S E O}$	$E_{W D O}$	$E_{W E O}$
Half-open	$E_{S D H}$	$E_{S E H}$	$E_{W D H}$	$E_{W E H}$
Closed	$E_{S D C}$	$E_{S E C}$	$E_{W D C}$	$E_{W E C}$

Table 3. Deployment Fraction Variables

	Cooling Weekday			Cooling Weekend			Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	N	M	A	N	M	A	N
Open	$\mathrm{F}_{\text {SDMo }}$	$\mathrm{F}_{\text {SDAO }}$	$\mathrm{F}_{\text {SDNO }}$	$\mathrm{F}_{\text {semo }}$	$\mathrm{F}_{\text {SEAO }}$	$\mathrm{F}_{\text {SENo }}$	Fwdmo	$\mathrm{F}_{\text {WDA }}$	$\mathrm{F}_{\text {WDNO }}$	$\mathrm{F}_{\text {wemo }}$	$\mathrm{F}_{\text {WEAO }}$	$\mathrm{F}_{\text {WENo }}$
Half-open	$\mathrm{F}_{\text {SDMH }}$	$\mathrm{F}_{\text {SDAH }}$	$\mathrm{F}_{\text {SDNH }}$	$\mathrm{F}_{\text {SEMH }}$	$\mathrm{F}_{\text {SEAH }}$	$\mathrm{F}_{\text {SENH }}$	FWDMH	$\mathrm{F}_{\text {WDA }}$	$\mathrm{F}_{\text {WDNH }}$	$\mathrm{F}_{\text {WEMH }}$	$\mathrm{F}_{\text {WEA }}$	$\mathrm{F}_{\text {WENH }}$
Closed	$\mathrm{F}_{\text {SDMC }}$	$\mathrm{F}_{\text {SDAC }}$	$\mathrm{F}_{\text {SDNC }}$	$\mathrm{F}_{\text {SEMC }}$	$\mathrm{F}_{\text {SEAC }}$	$\mathrm{F}_{\text {SENC }}$	$\mathrm{F}_{\text {WDMC }}$	$\mathrm{F}_{\text {WDAC }}$	$\mathrm{F}_{\text {WDNC }}$	$\mathrm{F}_{\text {WEMC }}$	$\mathrm{F}_{\text {WEAC }}$	$\mathrm{F}_{\text {WENC }}$

Deployment fraction data for North (heating) and South (cooling) climates are presented in Table 4 and Table 5.
Table 4. Deployment Schedule for North (Heating) Climate Zone

Cooling Weekday				Cooling Weekend				Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	N	M	A	N	M	A	N	
Open	0.26	0.24	0.23	0.26	0.25	0.23	0.29	0.30	0.23	0.28	0.29	0.22	
Half-open	0.35	0.34	0.32	0.36	0.36	0.33	0.32	0.33	0.28	0.32	0.33	0.29	
Closed	0.39	0.41	0.45	0.38	0.39	0.44	0.39	0.38	0.49	0.40	0.38	0.49	

Table 5. Deployment Schedule for South (Cooling) Climate Zone

Cooling Weekday				Cooling Weekend				Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	N	M	A	N	M	A	N	
Open	0.17	0.15	0.13	0.18	0.17	0.14	0.23	0.23	0.17	0.23	0.23	0.17	
Half-open	0.26	0.25	0.23	0.26	0.25	0.24	0.25	0.26	0.22	0.27	0.27	0.23	
Closed	0.57	0.60	0.65	0.56	0.58	0.62	0.52	0.51	0.61	0.51	0.50	0.59	

Cooling and heating periods are defined for each city in Appendix D.
$E\left(\tau_{w}, \tau_{d}, \tau_{h}\right)$ is calculated as follows for each city:

Houston:

$$
\begin{align*}
& E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C o i l}\left(\tau_{h}\right)_{B}+E_{F a n}\left(\tau_{h}\right)_{B}\right)_{C S=O N} \cdot S F_{E} \tag{13}\\
& E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C o i l}\left(\tau_{h}\right)_{H}+E_{\text {Fan }}\left(\tau_{h}\right)_{H}\right)_{C S=O N} \cdot S F_{E} \tag{14}\\
& E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C o i l}\left(\tau_{h}\right)_{C}+E_{\text {Fan }}\left(\tau_{h}\right)_{C}\right)_{C S=O N} \cdot S F_{E} \tag{15}
\end{align*}
$$

Minneapolis:

$$
\begin{align*}
& E_{O}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{B}\right) \cdot S F_{G}+\left(E_{\text {Fan }}\left(\tau_{h}\right)_{B}\right)_{H \mathrm{H}=O N} \cdot S F_{E} \tag{16}\\
& E_{H}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{H}\right) \cdot S F_{G}+\left(E_{\text {Fan }}\left(\tau_{h}\right)_{H}\right)_{H \mathrm{H}=O N} \cdot S F_{E} \tag{17}\\
& E_{C}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{C}\right) \cdot S F_{G}+\left(E_{\text {Fan }}\left(\tau_{h}\right)_{c}\right)_{H S=O N} \cdot S F_{E} \tag{18}
\end{align*}
$$

4.3.3 Operable Window Attachments with 2-D operation

Similar to window attachments with 1 degree freedom in operation, energy use for window attachment with 2-D operation is calculated by summing-up weighting Open, Half-Open and Closed states. Because of the increased complexity of the definition of Open, and HalfOpen states for attachments with 2 degrees of freedom (retraction levels and slat angle), multiple deployment states are attached to Open and Half-Open states. Currently, louvered blinds (both horizontal louvered blinds, or Venetian blinds, and vertical louvered blinds) have simulation models available for them. Assignment of different EnergyPlus runs and deployment states for louvered blinds are shown in Table 6.
Table 6. Deployment Information for Louvered blinds

		Run No.	Top Window	Bottom Window
Open (O)	Fully-deployed	1	0° slat angle	0° slat angle
	Fully-retracted	2	No shade	No shade
	Fully-deployed	3	45° slat angle	45° slat angle
	Fully-deployed	4	-45° slat angle	-45° slat angle
	Half-deployed	5	90° slat angle	No shade
	Half-deployed	6	45° slat angle	No shade
	Half-deployed	7	-45° slat angle	No shade
Closed (C)	Fully-deployed	8	90° slat angle	90° slat angle

The energy use for louvered blinds is the result of averaging hourly results for two open deployments, five half-open and one closed deployment schedules. Averaging procedure is detailed in Equations (19) to (21). Numbers in the third column in Table 6 are used in subsequent equations as an index number (1-2 for open, 3-7 for half-open, and 8 for closed).

$$
\begin{align*}
& E_{O}=\frac{\sum_{i=1}^{2}\left(\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D O, i}\left(\tau_{w}\right)+E_{S E O, i}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{W_{N}}\left(E_{W D O, i}\left(\tau_{w}\right)+E_{W E O, i}\left(\tau_{w}\right)\right)\right)}{2} \tag{19}\\
& E_{H}=\frac{\sum_{i=3}^{7}\left(\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D H, i}\left(\tau_{w}\right)+E_{S E H, i}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{W_{N}}\left(E_{W D H, i}\left(\tau_{w}\right)+E_{W E H, i}\left(\tau_{w}\right)\right)\right)}{5} \tag{20}\\
& E_{C}=\sum_{\tau_{w}=S_{1}}^{S_{N}}\left(E_{S D C, 8}\left(\tau_{w}\right)+E_{S E C, 8}\left(\tau_{w}\right)\right)+\sum_{\tau_{w}=W_{1}}^{W_{N}}\left(E_{W D C, 8}\left(\tau_{w}\right)+E_{W E C, 8}\left(\tau_{w}\right)\right) \tag{21}
\end{align*}
$$

An example of the application of formula to the calculation of $E_{S E O, 1}$ is shown below. Other quantities are calculated in the same manner.

$$
E_{S E O, 1}\left(\tau_{w}\right)=\sum_{\tau_{d}=6}^{7}\left(F_{S E M O} \cdot \sum_{\tau_{h}=5}^{17} E_{O, 1}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E A O} \cdot \sum_{\tau_{h}=5}^{17} E_{O, 1}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)+F_{S E N O} \cdot \sum_{\tau_{h}=5}^{17} E_{O, 1}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)\right)
$$

$E\left(\tau_{w}, \tau_{d}, \tau_{h}\right)$ is calculated as follows for each city:
Houston:

$$
\begin{align*}
& E_{O, i}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C \text { Coil }}\left(\tau_{h}\right)_{O, i}+E_{\text {Fan }}\left(\tau_{h}\right)_{O, i}\right)_{C S=O N} \cdot S F_{E} \quad(i=1,2) \tag{22}\\
& E_{H, i}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C \text { Coil }}\left(\tau_{h}\right)_{H, i}+E_{\text {Fan }}\left(\tau_{h}\right)_{H, i}\right)_{C S=O N} \cdot S F_{E}(i=3,4,5,6,7) \tag{23}\\
& E_{C, 8}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{D X C \text { Coil }}\left(\tau_{h}\right)_{C, 8}+E_{\text {Fan }}\left(\tau_{h}\right)_{C, 8}\right)_{C S=O N} \cdot S F_{E} \tag{24}
\end{align*}
$$

Minneapolis:

$$
\begin{align*}
& E_{O, i}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{O, i}\right)_{H S=O N} \cdot S F_{G}+\left(E_{\text {Fan }}\left(\tau_{h}\right)_{O, i}\right)_{H S=O N} \cdot S_{E} \quad(i=1,2) \tag{25}\\
& E_{H, i}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{H, i}\right)_{H S=O N} \cdot S F_{G}+\left(E_{F a n}\left(\tau_{h}\right)_{H, i}\right)_{H S=O N} \cdot S F_{E} \quad(i=3,4,5,6,7) \tag{26}\\
& E_{C, 8}\left(\tau_{w}, \tau_{d}, \tau_{h}\right)=\left(E_{G a s}\left(\tau_{h}\right)_{C, 8}\right)_{H S=O N} \cdot S F_{G}+\left(E_{F a n}\left(\tau_{h}\right)_{C, 8}\right)_{H S=O N} \cdot S F_{E} \tag{27}
\end{align*}
$$

5. Calculation of Final Results

Energy simulation by EnergyPlus is output into csv files, from which E_{A}, E_{B}, and Es is calculated, using formulas detailed above, and depending on the specific window attachment. The following is process outline:

- Selection which calculation is to be performed, $\mathrm{E}_{\mathrm{A}}, \mathrm{E}_{\mathrm{B}}, \mathrm{Es}_{\mathrm{S}} / \mathrm{EP}$
- City; Houston or Minneapolis (alternatively could be choice between Cooling and Heating)
- Window attachment type (for E_{A} and E_{B} only, no attachment is supplied)
- Number of csv files
- Each csv file name
- Deployment state (Open, half-open or closed)
- Slat angle for louvered blinds

Output from software tool:

- EA, Eb, and/or Es, as requested
- EP (applicable when Es is requested)

This interface is accomplished through XML file. XML Schema and example files are included in Appendix E

6. References

ISO. 2011. "ISO 18292: Energy Performance of Fenestration Systems for Residential Buildings - Calculation Procedure". International Standards Organization. Geneva, Switzerland.

DOE. 2016. "EnergyPlus 8.6: Software Tool for Calculating Energy Performance of Buildings"

Appendix A: Typical US Residential Buildings Assumptions

PARAMETERS	Proposed Residential Model Values	Value inputs in E+
Ventilation Air Requirements	$0.15 \mathrm{~L} / \mathrm{s}$ per square meter of floor space	$0.033456639274582 \mathrm{~m} 3 / \mathrm{s}$ $=0.15^{*} 10.55858^{*} 10.55858^{*} 2$
Wall framing system	Wood	
External Doors	U factor: $1.14 \mathrm{~W} /\left(\mathrm{m}^{2} . \mathrm{k}\right)$	$\mathrm{R}=0.88$
Window Area (\% Floor Area)	15.1%. There are two windows (each window with dimension $2^{*} 1.4 \mathrm{~m}^{*} 0.75 \mathrm{~m}$) on each orientation each floor.	$2^{*} 14(\mathrm{w})^{*} 0.75(\mathrm{~h})$ Refer to Residential model for AERC MEETING (0415).xlsx
Window Type	Double clear wood frame baseline window for both climates; $\mathrm{VT}=0.639, \mathrm{SHGC}=0.601, \mathrm{U}=0.472 \mathrm{Btu} / \mathrm{hr} . \mathrm{ft}^{2} . \mathrm{F}$, $\mathrm{AL}=2 \mathrm{cfm} / \mathrm{ft}^{2}$ Adiabatic window: $\mathrm{VT}=0, \mathrm{SHGC}=0, \mathrm{U}=0, \mathrm{AL}=0$	Baseline window: double clear using CLEAR_3.DAT, wood fixed frame Adiabatic window: custom created superinsulated opaque window without frame Refer to AERC 1 Baseline window B.docx
Window Distribution	8 windows per floor, distributed evenly and centered on the external walls. Each big window was split into the upper and lower small windows.	Refer to Residential model for AERC MEETING (0415).xlsx
Heating Systems	Gas Furnace for Minneapolis, MN; Heat Pump for Houston, TX.	
Heating System Fuels	Gas for Minneapolis, MN; Electricity for Houston, TX.	
Cooling Systems	A/C for Minneapolis, MN; Heat Pump for Houston, TX.	
HVAC System Sizing	For each climate, the HVAC systems were sized based on the base window option (without window attachments).	Houston (HP): Cooling capacity: 13131.31W Heating capacity: 13131.31W Sensible heat ratio: 0.733253 Air flow rate: $0.652 \mathrm{~m} 3 / \mathrm{s}$ Minneapolis (GAC): Cooling capacity: 10628.64W Heating capacity: 16720.73W Sensible heat ratio: 0.753625 Air flow rate: $0.563 \mathrm{~m} 3 / \mathrm{s}$ Refer to Doubleclear_basement_Minneapolis, \& Doubleclear_slab_Houston
HVAC Efficiencies	Minneapolis (GAC): AFUE=0.78 for Gas furnace heating (annual fuel utilization efficiency) Houston (HP): HSPF=6.8 for Air-cooled heat pumps heating mode (the converted COP for heating is ~ 1.99) Both: SEER=10.0 for Air-cooled air conditioners and heat pumps cooling mode (the converted COP for cooling is ~ 2.70)	(1) EER $=1.12$ * SEER -0.02 * SEER2 (2) $\mathrm{EER}=\mathrm{COP}$ * 3.41 (3) Avg COP = Heat transferred / electrical energy supplied $=(\mathrm{HSPF} * 1055.056 \mathrm{~J} / \mathrm{BTU}) /(3600 \mathrm{~J} /$ watt hour) $=0.29307111$ HSPF.
Thermostat Settings	Heating: $70^{\circ} \mathrm{F}$, Cooling: $75^{\circ} \mathrm{F}$ No setback	Heating set point: $21.11{ }^{\circ} \mathrm{C}$ Cooling set point: $23.89^{\circ} \mathrm{C}$
Internal Loads	Number of People $=3$ Hardwire Lights $=1.22$ Watts $/ \mathrm{m}^{2}$ Plug-in Lights $=0.478 \mathrm{Watts} / \mathrm{m}^{2}$ Refrigerator $=91.09$ Watts - Design Level Misc. Electrical Equipment $=2.46$ Watts $/ \mathrm{m}^{2}$	

PARAMETERS	Proposed Residential Model Values	Value inputs in E+	
	Clothes Washer $=$ 29.6 Watts - Design Level Clothes Dryer $=$ 222.1 Watts - Design Level Dish Washer $=68.3$ Watts - Design Level Misc. Electrical Load $=$ 182.5 Watts - Design Level Gas Cooking range $=248.5$ Watts - Design Level Misc. Gas Load $=0.297$ Watts $/ \mathrm{m}^{2}$ Exterior Lights $=58$ Watts - Design Level Garage Lights $=9.5$ Watts - Design Level The operation schedules of the all equipment are referred to the PNNL model.		
Weather Data	USA_TX_Houston- Bush.Intercontinental.AP.722430_TMY3.epw USA_MN_Minneapolis- St.Paul.Intl.AP.726580_TMY3_2.epw	All TMY3	
Number of Locations	2 typical US cities: Minneapolis, MN for heating; Houston, TX for cooling.		
Calculation Tool	EnergyPlus version 8.5 (LBN's custom version that addresses issue with TIR>0)		
Energy Code	Combination of vintages for each climate zone, but mostly like IECC 1998		
Results extracted from E+	Heating energy use, cooling energy use, fan energy use and total energy use of the house which includes the all energy uses, such as lighting.		
Attachment deployment operations	Refer to (Bickel, 2013)		
Ground temperature	For Minneapolis unheated basement with R11 insulation; For Houston, slab-on-grade with no slab insulation.		
Super insulated window	This window can be regarded as an adiabatic surface without heat transferring.	0.003, 0.000001, 0.999999, 0.999999, 0.000001, 0.999999, 0.999999, 0.000000, 0.000001, 0.000001, 0.00000001;	!- Thickness \{m\} !- Solar Transmittance !- Front Reflectance !- Back Reflectance !- Visible Transmittance !- Front Visible Reflectance !- Back Visible Reflectance !- Infrared Transmittance !- Front Infrared Emissivity !- Back Infrared Emissivity !- Conductivity $\{\mathrm{W} / \mathrm{m}-\mathrm{K}\}$

Appendix B: Output Section in IDF File

!- =========== ALL OBJECTS IN CLASS: OUTPUT:VARIABLE ============

Output:Variable,*,Site Day Type Index,hourly;

Output:Variable,*,Air System Electric Energy,hourly;

Output:Variable,* ,Air System Fan Electric Energy,hourly;

Output:Variable,* ,Air System DX Cooling Coil Electric Energy,hourly;

Output:Variable,* ,Zone Lights Electric Energy, hourly;

Output:Variable,*,Facility Net Purchased Electric Energy,hourly;
Output:Variable,*,Facility Total Building Electric Demand Power,hourly;

Output:Variable,*,Facility Total HVAC Electric Demand Power,hourly;

Output:Variable,*,Facility Total Electric Demand Power,hourly;

Output:Variable, *,Air System Cooling Coil Total Cooling Energy,hourly;

Output:Variable,*,Air System Heating Coil Total Heating Energy,hourly;

Output:Variable,* ,Air System Fan Air Heating Energy,hourly;

Output:Variable,* ,Air System Gas Energy,hourly;

Output:Variable,*,Zone Gas Equipment Gas Energy,hourly;

Output:Variable,*,Water Heater Gas Energy,hourly;

Appendix C: Include Files

C. 1 Windows:

Same window configuration file is provided for both climate zones/cities. Also, same window configuration file is used for all windows, however with changes made for construction reference (glazing construction and frame) for different window attachment runs (e.g., For baseline window, construction reference is AERC_Doubleclear_Baseline). For different baseline windows, as their averaged frame width are different, the glazing coordinates should be changed as well. The following sections depict the methodologies of calculating the averaged frame width and changing the fenestration coordinates.

C.1.1 Calculating and exporting the average frame width in WINDOW

As EnergyPlus can't model the half-deployed scenario for a window shade, we used two separate small windows (one at the top and one at the bottom) to replace a single window in simulation. However, this replacement results in a larger frame area for the modelled window because the head and sill are counted twice (as shown in the rightmost drawing of the following picture). So, we will replace the original averaged frame width (L_{f} WIN) from WINDOW with a new averaged frame width (L_{f} ave) to make sure the modeled two small windows have the same glazing and frame areas as the original window. The methodology for the averaged frame width calculation is detailed later in this section. The following figure illustrates the original window with original frame dimensions, L_{s}, L_{j}, and $L h$, then window with the original averaged frame dimension, $L_{f_{-} \text {IIN, }}$ as it is exported from WINDOW to IDF file, and resulting 2 windows used in simulation, with the new averaged frame width, $L f_{-}$ave.

$A_{\text {real } _g}$ is the actual window glazing area.
$A_{\text {wing }}$ is the window glazing area normally exported from WINDOW.
$A_{\text {model }-g}$ is the window glazing area in E+ simulation.

The first step is to calculate the original averaged frame width ($L_{f_{-} \text {WIN }}$). WINDOW program can calculate $L_{f_{-} \text {WIN }}$ according to the below equations.

$$
\begin{align*}
& A_{\text {real } _g}=W \cdot H-\left(L_{h} \cdot W+L_{s} \cdot W+2 \cdot L_{j} \cdot\left(H-L_{h}-L_{s)}\right)\right. \tag{C.1}\\
& A_{\text {WIN_g }}=W \cdot H-\left(2 \cdot W \cdot L_{f_{-} W I N}+2 \cdot L_{f_{-} W i N} \cdot\left(H-2 \cdot L_{f_{-} W I N}\right)\right) \tag{C.2}
\end{align*}
$$

Considering that $A_{\text {real } _g=} A_{\text {win } _ \text {g }}$, and substituting (1) and (2) into this equality, then:

$$
\begin{equation*}
W \cdot H-\left(L_{h} \cdot W+L_{s} \cdot W+2 \cdot L_{j} \cdot\left(H-L_{h}-L_{s)}\right)=W \cdot H-\left(2 \cdot W \cdot L_{f_{-} W I N}+2 \cdot L_{f_{-} W I N} \cdot\left(H-2 \cdot L_{f_{-} W I N}\right)\right)\right. \tag{C.3}
\end{equation*}
$$

Or expressed as quadratic equation that can be solved for $L_{f_{-} \text {WIN }}$.

$$
\begin{align*}
& 4 \cdot L_{f_{-} W I N}{ }^{2}+2 \cdot(H+W) \cdot L_{f_{-} W I N}-\left(W \cdot\left(L_{h}+L_{s}\right)+2 \cdot L_{j} \cdot\left(H-L_{h}-L_{s}\right)\right)=0 \tag{C.4}\\
& L_{f_{-} W I N}=\frac{-2 \cdot(H+W) \pm \sqrt{4 \cdot(H+W)^{2}+16 \cdot\left(W \cdot\left(L_{h}+L_{s}\right)+2 \cdot L_{j} \cdot\left(H-L_{h}-L_{s}\right)\right)}}{8} \tag{C.5}
\end{align*}
$$

WINDOW program can also export the original averaged frame width ($L_{f_{-} \text {IIN }}$) to a normal IDF file (which is different from the specialized IDF file for EPCalc only, called "AERC EnergyPlus IDF"). An example of $L_{f_{-} \text {WIN }}$ exportation for AERC Baseline Window B is shown in the following figure.

The next step is to calculate the new averaged frame width ($L f_{-}$ave) for the configuration consisting of two windows (top and bottom) with the original averaged frame width ($L_{f_{-} \text {IIN }}$). This calculation was conducted in WINDOW program according to the below equations.

$$
\begin{equation*}
A_{\text {Model }_{-} g}=W \cdot H-\left(4 \cdot W \cdot L_{f_{-} \text {Ave }}+4 \cdot L_{f_{-} \text {Ave }} \cdot\left(\frac{H}{2}-2 \cdot L_{f_{-} \text {Ave }}\right)\right) \tag{C.6}
\end{equation*}
$$

Considering that $A_{\text {Model } _g}=A_{\text {win_g }}$, and substituting (2) and (6) into this equality, then:
$W \cdot H-\left(2 \cdot W \cdot L_{f_{-} W I N}+2 \cdot L_{f_{-} W I N} \cdot\left(H-2 \cdot L_{f_{-} W I N}\right)\right)=W \cdot H-\left(4 \cdot W \cdot L_{f_{-} \text {Ave }}+4 \cdot L_{f_{-} \text {Ave }} \cdot\left(\frac{H}{2}-2 \cdot L_{f_{-} A v e}\right)\right)$

Or expressed as quadratic equation that can be solved for $L_{f_{-} A v e}$.

$$
\begin{align*}
& -4 \cdot L_{f_{-} A v e}{ }^{2}+(H+2 \cdot W) \cdot L_{f_{-} A v e}+2 \cdot L_{f_{-} W I N}{ }^{2}-(W+H) \cdot L_{f_{-} W I N}=0 \tag{C.8}\\
& L_{f_{-} A v e}=\frac{-(H+2 \cdot W) \pm \sqrt{(H+2 \cdot W)^{2}+16 \cdot\left(2 \cdot L_{f_{-} W I N}{ }^{2}-(W+H) \cdot L_{f_{-} W I N}\right)}}{-8} \tag{C.9}
\end{align*}
$$

There are two roots to the quadratic equation (9), $L_{f_{-} A v e_{-} 1}$ and $L_{f_{-} A v e_{-} 2}$, of which one is solution that we are seeking.

$$
\begin{equation*}
L_{f_{-} A v e}=\min \left(L_{f_{-} A v e_{-} 1}, L_{f_{-} A v e_{-} 2}\right) \tag{C10}
\end{equation*}
$$

Take the current AERC baseline window B as an example:

$$
\begin{aligned}
& \mathrm{W}=1.4 \mathrm{~m} \\
& \mathrm{H}=1.5 \mathrm{~m} \\
& \text { Lf_win }=0.057150 \mathrm{~m}
\end{aligned}
$$

So Equations (8) and (9) can be written as:

$$
\begin{aligned}
& -4 \cdot L_{f_{-} A v e}{ }^{2}+4.3 \cdot L_{f_{-} A v e}-0.1592027=0 \\
& L_{f_{-} A v e}=\frac{-4.3 \pm \sqrt{18.49-2.54724}}{-8} \\
& L_{f_{-} A v e}=\min (0.038395,1.036605) \\
& L_{f_{-} A v e}=0.038395
\end{aligned}
$$

This calculation is built into Berkeley Lab WINDOW software tool, which is exported to AERCalc in a new specialized IDF file, called "AERC Energy Plus IDF", where the original frame width, $L_{f_{-} \text {wiN, }}$ new averaged frame width $L f_{-}$ave, and window width and height (W and H , include the frame width), are included in the commented section. New averaged frame width is also inserted in the appropriate IDF field where it is used by EnergyPlus. The following figure illustrates this new AERC EnergyPlus IDF .

For other baseline windows which may have different frame widths, WINDOW program will calculate L_{f} Ave u using equations (9) and (10) and export $L_{f_{-} A v e}$ as shown in the above figure.

C.1.2 Changing the fenestration coordinates in window configuration file

The whole window area, consisting of the glass area and the frame area, is given by specifying the window width (W , includes the frame width) and the height (H , includes the frame width). However, in Energyplus, window coordinates describe vision portion of glazing system only, so full window area is obtained by adding frame width to glazing area. The fenestration coordinates can be calculated by using the window width (W), the window height (H) and the new averaged frame width ($L_{f_{-} A v e}$). The methodology is detailed in this section.

For each window in a typical building, the coordinates of the vertices for the vision area of glazing are calculated starting with lower left corner. The remaining three vertices are then calculated based on the fixed coordinates of the lower-left corner point, the window width (W), height (H) and the new averaged frame width ($\left.L_{f_{-} A v e}\right)$. However, it is worth noting that the coordinate calculation method is different for different oriented windows. The calculation methods for different orientations are illustrated in sections below.

C.1.2.1 Template for IDF snippet for windows

An IDF snippet for the definition of each window is required. There are 8 windows on each orientation. Template for the IDF snippet is illustrated as follows:

Where OriF_N_Pos stand for:

- Ori = Orientation (ldf- front side (South), ldb - back side (North), sdr - right side (East), sdl - left side (West))
- F = Floor number (1 - first floor, 2 - second floor)
- $\quad \mathrm{N}=$ Window number on each floor and orientation (1 - left side window, 2 - right side window)
- Pos = Window position(Bot - bottom window, Top - top window)
- $\quad W=$ Wall number of each perimeter zone on each floor (1- external wall on which the windows were installed)
For example, Window_ldf1_2_Bot.unit1 means the right bottom window on the first floor on the south orientation; Wall_sdr1_2.unit1 means the external wall on the second floor of east orientation

C.1.2.2 South facing windows:

There are eight south facing windows (named as Window_ldfF_N_Pos.unit1).
where, the coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:
$\mathrm{X} 1=$ values for each of south facing windows are listed in table below

$$
Y 1=Y 2=Y 3=Y 4=0.00,
$$

Z 1 values for each of south facing windows are listed in table below
The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width (L_{f} Ave) using the below formulas:

```
\(\mathrm{X} 2=\mathrm{X} 1+\left(\mathrm{W}-2^{*} L L_{-} A v e\right)\)
Z2=Z1
\(\mathrm{X} 3=\mathrm{X}+\left(\mathrm{W}-2^{*} L_{f_{-} A v e}\right)\)
\(\mathrm{Z} 3=\mathrm{Z}+\left(\mathrm{H} / 2-2^{*} L_{f}-A v e\right)\)
X4=X1
\(\mathrm{Z} 4=\mathrm{Z}+\left(\mathrm{H} / 2-2^{*} L f_{f} A v e\right)\)
```

For baseline window B, the coordinates of the lower-left corner vertices of the eight south facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window Idf1 1 Bot.unit1	Wall Idf1 1.unit1	2.50	0.00	0.60
Window_Idf1_1_Top.unit1	Wall_Idf1_1.unit1	2.50		1.35
Window_Idf1_2_Bot.unit1	Wall_Idf1_1.unit1	6.60		0.60
Window_Idf1_2_Top.unit1	Wall_Idf1_1.unit1	6.60		1.35
Window_Idf2_1_Bot.unit1	Wall_Idf1_2.unit1	2.50		3.20
Window_Idf2_1_Top.unit1	Wall_Idf1_2.unit1	2.50		3.95
Window_Idf2_2_Bot.unit1	Wall_Idf1_2.unit1	6.60		3.20
Window_Idf2_2_Top.unit1	Wall_Idf1_2.unit1	6.60		3.95

The coordinates of the lower-left corner vertices of the eight south facing windows are fixed in the E+ model and will be used for different baseline windows. With the coordinates of the lower-left corner vertices, the coordinates of the remaining vertices of each south facing window can be calculated using Equations above.

Take the current AERC baseline window B as an example:

$$
\begin{aligned}
& \mathrm{W}=1.4 \mathrm{~m} \\
& \mathrm{H}=1.5 \mathrm{~m} \\
& L_{f-A v e}=0.038395 \mathrm{~m}
\end{aligned}
$$

the coordinates of the eight south facing windows are calculated and the values are listed in the below table.

Fenestration Name	Building Surface	Vertices	X	Y	Z
Window_Idf1_1_Bot.unit1	Wall_Idf1_1.unit1	1	2.50000	0.00000	0.60000
		2	3.82321	0.00000	0.60000
		3	3.82321	0.00000	1.27321
		4	2.50000	0.00000	1.27321
Window_Idf1_1_Top.unit1	Wall_Idf1_1.unit1	1	2.50000	0.00000	1.35000
		2	3.82321	0.00000	1.35000
		3	3.82321	0.00000	2.02321
		4	2.50000	0.00000	2.02321
Window_Idf1_2_Bot.unit1	Wall_Idf1_1.unit1	1	6.60000	0.00000	0.60000
		2	7.92321	0.00000	0.60000
		3	7.92321	0.00000	1.27321
		4	6.60000	0.00000	1.27321
Window_Idf1_2_Top.unit1	Wall_Idf1_1.unit1	1	6.60000	0.00000	1.35000
		2	7.92321	0.00000	1.35000
		3	7.92321	0.00000	2.02321
		4	6.60000	0.00000	2.02321
Window_Idf2_1_Bot.unit1	Wall_Idf1_2.unit1	1	2.50000	0.00000	3.20000
		2	3.82321	0.00000	3.20000
		3	3.82321	0.00000	3.87321
		4	2.50000	0.00000	3.87321
Window_Idf2_1_Top.unit1	Wall_Idf1_2.unit1	1	2.50000	0.00000	3.95000
		2	3.82321	0.00000	3.95000
		3	3.82321	0.00000	4.62321
		4	2.50000	0.00000	4.62321
Window_Idf2_2_Bot.unit1	Wall_Idf1_2.unit1	1	6.60000	0.00000	3.20000
		2	7.92321	0.00000	3.20000
		3	7.92321	0.00000	3.87321
		4	6.60000	0.00000	3.87321
Window_Idf2_2_Top.unit1	Wall_Idf1_2.unit1	1	6.60000	0.00000	3.95000
		2	7.92321	0.00000	3.95000
		3	7.92321	0.00000	4.62321
		4	6.60000	0.00000	4.62321

C.1.2.3 North facing windows:

There are also eight north facing windows (named as Window_ldbF_N_Pos.unit1).
Coordinates of the lower-left corner vertice ($\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$) are fixed as follows:
$\mathrm{X} 1=$ values for each of north facing windows are listed in table below
$Y 1=Y 2=Y 3=Y 4=10.55858$,
$\mathrm{Z} 1=$ values for each of north facing windows are listed in table below

The coordinates of the remaining three vertices can be calculated based on the window width (W), the window height (H) and the new averaged frame width ($L_{f_{-} A v e}$) using the formulas below:

```
X2=X1-(W-2* Lf_Ave)
Z2=Z1
X3=X1-(W-2* Lf_Ave)
Z3=Z1+(H/2-2* L_A_Ave)
X4=X1
Z4=Z1+(H/2-2* Lff_Ave)
```

The coordinates of the lower-left corner vertices of the eight north facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_Idb1_1_Bot.unit1	Wall_Idb1_1.unit1	8.00	10.55858	0.60
Window_Idb1_1_Top.unit1	Wall_Idb1_1.unit1	8.00		1.35
Window_Idb1_2_Bot.unit1	Wall_Idb1_1.unit1	3.90		0.60
Window_Idb1_2_Top.unit1	Wall_Idb1_1.unit1	3.90		1.35
Window_Idb2_1_Bot.unit1	Wall_Idb1_2.unit1	8.00		3.20
Window_Idb2_1_Top.unit1	Wall_Idb1_2.unit1	8.00		3.95
Window_Idb2_2_Bot.unit1	Wall_Idb1_2.unit1	3.90		3.20
Window_Idb2_2_Top.unit1	Wall_Idb1_2.unit1	3.90		3.95

The coordinates of the remaining vertices of each north facing window are calculated using above equation.

For AERC baseline window B, the coordinates of the eight north facing windows are as follows

Fenestration Name	Building Surface	Vertices	X	Y	Z
Window_Idb1_1_Bot.unit1	Wall_Idb1_1.unit1	1	8.00000	10.55858	0.60000
		2	6.67679	10.55858	0.60000
		3	6.67679	10.55858	1.27321
		4	8.00000	10.55858	1.27321
Window_Idb1_1_Top.unit1	Wall_Idb1_1.unit1	1	8.00000	10.55858	1.35000
		2	6.67679	10.55858	1.35000
		3	6.67679	10.55858	2.02321
		4	8.00000	10.55858	2.02321
Window_Idb1_2_Bot.unit1	Wall_Idb1_1.unit1	1	3.90000	10.55858	0.60000
		2	2.57679	10.55858	0.60000
		3	2.57679	10.55858	1.27321
		4	3.90000	10.55858	1.27321
Window_Idb1_2_Top.unit1	Wall_Idb1_1.unit1	1	3.90000	10.55858	1.35000
		2	2.57679	10.55858	1.35000
		3	2.57679	10.55858	2.02321
		4	3.90000	10.55858	2.02321
Window_Idb2_1_Bot.unit1	Wall_Idb1_2.unit1	1	8.00000	10.55858	3.20000
		2	6.67679	10.55858	3.20000
		3	6.67679	10.55858	3.87321
		4	8.00000	10.55858	3.87321
Window_Idb2_1_Top.unit1	Wall_Idb1_2.unit1	1	8.00000	10.55858	3.95000
		2	6.67679	10.55858	3.95000
		3	6.67679	10.55858	4.62321
		4	8.00000	10.55858	4.62321
Window_Idb2_2_Bot.unit1	Wall_Idb1_2.unit1	1	3.90000	10.55858	3.20000
		2	2.57679	10.55858	3.20000
		3	2.57679	10.55858	3.87321
		4	3.90000	10.55858	3.87321
Window_Idb2_2_Top.unit1	Wall_Idb1_2.unit1	1	3.90000	10.55858	3.95000
		2	2.57679	10.55858	3.95000
		3	2.57679	10.55858	4.62321
		4	3.90000	10.55858	4.62321

C.1.2.4 East facing windows:

There are also eight east facing windows (named as Window_sdrF_N_Pos.unit1).
Coordinates of the lower-left corner vertice ($\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$) are fixed as follows:
$X 1=X 2=X 3=X 4=10.55858$,
$\mathrm{Y} 1=$ values for each of east facing windows are listed in table below
Z1 = values for each of east facing windows are listed in table below

The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width ($L_{f_{-}}$ave) using the below formulas:

$$
\begin{aligned}
& \mathrm{Y} 2=\mathrm{Y} 1+\left(\mathrm{W}-2^{*} L_{f_{-} A v e}\right) \\
& \mathrm{Z} 2=\mathrm{Z} 1 \\
& \mathrm{Y} 3=\mathrm{Y} 1+\left(\mathrm{W}-2^{*} L_{f_{-} A v e}\right) \\
& \mathrm{Z} 3=\mathrm{Z} 1+\left(\mathrm{H} / 2-2^{*} L_{f_{-} A v e}\right) \\
& \mathrm{Y} 4=\mathrm{Y} 1 \\
& \mathrm{Z} 4=\mathrm{Z} 1+\left(\mathrm{H} / 2-2^{*} L_{f_{-} A v e}\right)
\end{aligned}
$$

The coordinates of the lower-left corner vertices of the eight east facing windows are listed as follows:

Fenestration Name	Building Surface Name	X1	Y1	Z1
Window_sdr1_1_Bot.unit1	Wall_sdr1_1.unit1	10.55858	2.50	0.60
Window_sdr1_1_Top.unit1	Wall_sdr1_1.unit1		2.50	1.35
Window_sdr1_2_Bot.unit1	Wall_sdr1_1.unit1		6.60	0.60
Window_sdr1_2_Top.unit1	Wall_sdr1_1.unit1		6.60	1.35
Window_sdr2_1_Bot.unit1	Wall_sdr1_2.unit1		2.50	3.20
Window_sdr2_1_Top.unit1	Wall_sdr1_2.unit1		2.50	3.95
Window_sdr2_2_Bot.unit1	Wall_sdr1_2.unit1		6.60	3.20
Window_sdr2_2_Top.unit1	Wall_sdr1_2.unit1		6.60	3.95

The coordinates of the remaining vertices of each east facing window are calculated using above equations.

For AERC baseline window B, the full set of coordinates for the eight east facing windows are listed in the table below.

Fenestration Name	Building Surface	Vertices	X	Y	Z
Window_sdr1_1_Bot.unit1	Wall_sdr1_1.unit1	1	10.55858	2.50000	0.60000
		2	10.55858	3.82321	0.60000
		3	10.55858	3.82321	1.27321
		4	10.55858	2.50000	1.27321
Window_sdr1_1_Top.unit1	Wall_sdr1_1.unit1	1	10.55858	2.50000	1.35000
		2	10.55858	3.82321	1.35000
		3	10.55858	3.82321	2.02321
		4	10.55858	2.50000	2.02321
Window_sdr1_2_Bot.unit1	Wall_sdr1_1.unit1	1	10.55858	6.60000	0.60000
		2	10.55858	7.92321	0.60000
		3	10.55858	7.92321	1.27321
		4	10.55858	6.60000	1.27321
Window_sdr1_2_Top.unit1	Wall_sdr1_1.unit1	1	10.55858	6.60000	1.35000
		2	10.55858	7.92321	1.35000
		3	10.55858	7.92321	2.02321
		4	10.55858	6.60000	2.02321
Window_sdr2_1_Bot.unit1	Wall_sdr1_2.unit1	1	10.55858	2.50000	3.20000
		2	10.55858	3.82321	3.20000
		3	10.55858	3.82321	3.87321
		4	10.55858	2.50000	3.87321
Window_sdr2_1_Top.unit1	Wall_sdr1_2.unit1	1	10.55858	2.50000	3.95000
		2	10.55858	3.82321	3.95000
		3	10.55858	3.82321	4.62321
		4	10.55858	2.50000	4.62321
Window_sdr2_2_Bot.unit1	Wall_sdr1_2.unit1	1	10.55858	6.60000	3.20000
		2	10.55858	7.92321	3.20000
		3	10.55858	7.92321	3.87321
		4	10.55858	6.60000	3.87321
Window_sdr2_2_Top.unit1	Wall_sdr1_2.unit1	1	10.55858	6.60000	3.95000
		2	10.55858	7.92321	3.95000
		3	10.55858	7.92321	4.62321
		4	10.55858	6.60000	4.62321

C.1.2.5 West facing windows:

There are also eight west facing windows (named as Window_sdlF_N_Pos.unit1).
where, the coordinates of the lower-left corner vertice (X1, Y1, Z1) are fixed as follows:
$X 1=X 2=X 3=X 4=0.00$,
$\mathrm{Y} 1=$ values for each of west facing windows are listed in table below
$\mathrm{Z} 1=$ values for each of west facing windows are listed in table below

The coordinates of the remaining three vertices are calculated based on the window width (W), the window height (H) and the new averaged frame width ($L_{f_{-}}$ave) using the below formulas:

$$
\begin{aligned}
& \mathrm{Y} 2=\mathrm{Y} 1-\left(\mathrm{W}-2^{*} L_{f_{-} A v e}\right) \\
& \mathrm{Z} 2=\mathrm{Z} 1 \\
& \mathrm{Y} 3=\mathrm{Y} 1-\left(\mathrm{W}-2^{*} L_{f-A v e}\right) \\
& \mathrm{Z} 3=\mathrm{Z} 1+\left(\mathrm{H} / 2-2^{*} L_{f_{-}} \mathrm{Ave}\right) \\
& \mathrm{Y} 4=\mathrm{Y} 1 \\
& \mathrm{Z} 4=\mathrm{Z} 1+\left(\mathrm{H} / 2-2^{*} L_{f_{-} A v e}\right)
\end{aligned}
$$

The coordinates of the lower-left corner vertices of the eight west facing windows are listed as follows:

Fenestration Name	Building Surface Name	X	Y	Z
Window_sdl1_1_Bot.unit1	Wall_sd11_1.unit1	0.00	8.00	0.60
Window_sdl1_1_Top.unit1	Wall_sdl1_1.unit1		8.00	1.35
Window_sdl1_2_Bot.unit1	Wall_sdl1_1.unit1		3.90	0.60
Window_sdl1_2_Top.unit1	Wall_sdl1_1.unit1		3.90	1.35
Window_sdl2_1_Bot.unit1	Wall_sdl1_2.unit1		8.00	3.20
Window_sdl2_1_Top.unit1	Wall_sdl1_2.unit1		8.00	3.95
Window_sdl2_2_Bot.unit1	Wall_sdl1_2.unit1		3.90	3.20
Window_sdl2_2_Top.unit1	Wall_sdl1_2.unit1		3.90	3.95

The coordinates of the remaining vertices of each west facing window are calculated using above equations.

For AERC baseline window B, the coordinates of the eight west facing windows are listed in the table below.

Fenestration Name	Building Surface	Vertices	X	Y	Z
Window_sdl1_1_Bot.unit1	Wall_sdl1_1.unit1	1	0.00000	8.00000	0.60000
		2	0.00000	6.67679	0.60000
		3	0.00000	6.67679	1.27321
		4	0.00000	8.00000	1.27321
Window_sdl1_1_Top.unit1	Wall_sdl1_1.unit1	1	0.00000	8.00000	1.35000
		2	0.00000	6.67679	1.35000
		3	0.00000	6.67679	2.02321
		4	0.00000	8.00000	2.02321
Window_sdl1_2_Bot.unit1	Wall_sdl1_1.unit1	1	0.00000	3.90000	0.60000
		2	0.00000	2.57679	0.60000
		3	0.00000	2.57679	1.27321
		4	0.00000	3.90000	1.27321
Window_sdl1_2_Top.unit1	Wall_sdl1_1.unit1	1	0.00000	3.90000	1.35000
		2	0.00000	2.57679	1.35000
		3	0.00000	2.57679	2.02321
		4	0.00000	3.90000	2.02321
Window_sdl2_1_Bot.unit1	Wall_sdl1_2.unit1	1	0.00000	8.00000	3.20000
		2	0.00000	6.67679	3.20000
		3	0.00000	6.67679	3.87321
		4	0.00000	8.00000	3.87321
Window_sdl2_1_Top.unit1	Wall_sdl1_2.unit1	1	0.00000	8.00000	3.95000
		2	0.00000	6.67679	3.95000
		3	0.00000	6.67679	4.62321
		4	0.00000	8.00000	4.62321
Window_sdl2_2_Bot.unit1	Wall_sdl1_2.unit1	1	0.00000	3.90000	3.20000
		2	0.00000	2.57679	3.20000
		3	0.00000	2.57679	3.87321
		4	0.00000	3.90000	3.87321
Window_sdl2_2_Top.unit1	Wall_sdl1_2.unit1	1	0.00000	3.90000	3.95000
		2	0.00000	2.57679	3.95000
		3	0.00000	2.57679	4.62321
		4	0.00000	3.90000	4.62321

A complete EnergyPlus window configuration inc file for the current AERC baseline window B was attached at the end of this document as Appendix F .

Baseline Window Configuration Include File:


```
    ! Window Material/Construction file ulth spectral data in IDF format
Construction:ComplexFenest ationState,
AERC_Doubleclear_Baseline, !- name
LBNLWindow,
None,
ThermParam_Glz_10001,
CFS_Glz_10001_Basis,
CFS_Glz_10001_TfSol,
CFS_Glz_10001_RbSol,
CFS Glz 10001 Tfvis,
CFS_Glz_10001_Rpvis,
Glass_102_Layer,
CFS_Glz_10001_Layer_1_fAbs,
CFS_Glz_10001_Layer_1_bAbs,
Gap_1_Glz_10001_Layer_1,
```



```
Glass_102_Layer,
CFS_Glz_10001_Layer_2_fAbs,
CFS_GIz_10001_Layer_2_bAbs;
    !- layer 2 name
    !- basis symmetry type
                                    !- window thermal model
    !- basis matrix name
    !-Tfsol
    !- Rbsol
    !- Tfvis
    !- Rbvis
    !- Iayer 1 name
        !-fAbs
        !-bAbs
    !- gap 1 name
```

...

Adiabatic Window Configuration Include File:

FenestrationSurface:Detailed,	
Window_Idf1_1 Bot.unit1, !- Name Window, !-Surface Type	A: Adiabatic window run: Glazing construction name is
Adiabatic_Window, 1-Construction Name	
Wall_Idf1_1.unit1, !- Building Surface Name	Adiabatic window. Frame and
!- Outside Boundary Condition Object	divider construction name isblank (keep a comma) for both
!- View Factor to Ground	
!- Shading Control Name	top and bottom "half" of the
4-Frame and Divider Name	baseline window.
1, !- Multiplier	
4, !- Number of Vertices	
$2.50000000000,0.000000000000,0.60000000000$,	$X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$
3.823210000000, 0.000000000000, 0.600000000000, !-	$X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
3.823210000000, 0.000000000000, 1/273210000000, !-	$X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$2.50000000000,0.000000000000,1.273210000000 ;$	$X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$
FenestrationSurface:Detailed,	
Window Idf1 1 Top. unit1, ! Name	
Window, !-Surface Type	
Adiabatic_Window, !- Construction Name	
Waili_ufil_1.uniti, l-Buliuing Surface Name	
!- Outside Boundary Condition Object	
!- Yiew Factor to Ground	
1- Shading Control Name	
!- Frame and Divider Name	
1, !- Multiplier	
4, !- Number of Vertices	
$2.500000000000,0.000000000000,1.350000000000$, !-	$X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$
3.823210000000, 0.000000000000, 1.350000000000, !-	$X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
3.823210000000, 0.000000000000, 2.023210000000, !-	$X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$2.500000000000,0.000000000000,2.023210000000 ;$!-	$X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$

Adiabatic Window Construction Include File (Window construction adiabatic.inc):

Half-Deployed Window Configuration Include File:

Fully-Deployed Window Configuration Include File:

FenestrationSurface:Detailed, Window_Idf1_1 Bot.unit1, !- Name Window, !-Surface Type	S: Attachments fully deployed: Glazing Construction is
AERC_Doubleclear_Attachment, $\quad 1$-Construction Name	AERC_Doubleclear_Attachment,
Wall_Idf1_1.unit1, !- Building Surface Name	ch is user-specified. Frame
!- Outside Boundary Condition Object	struction name is
!- View Factor to Ground	AERC Wood Frame for both
!-Shading Controt Name	top and bottom "half" of the
AERC_Wood_Frame, !- Frame and Divider Name	baseline window.
1, !-Multiplier	
4, !- Number of Vertices	
$2.500000000000,0.000000000000,0.600000000000,1-\mathrm{X}$,	, $=$ => Vertex $1\{\mathrm{~m}\}$
3.823210000000, 0.000000000000, 0.600000000000, !- X ,	,
3.823210000000, 0.000000000000, 1.273210000000, !- X ,	,
$2.500000000000,0.000000000000,1.273210000000 ;$!-	, ==> Vertex $4\{\mathrm{~m}\}$
FenestrationSurface:Detailed,	
Window_Idf1_1 Top.unit1, !- Name	
Window, !-Surface Type	
AERC_Doubleclear_Attachment, !- Construction Name	
WVali_idifi_i.uniti, !- Bulliding Surface Name	
!- Outside Boundary Condition Object	
!- View Factor to Ground	
!-Shading Control Name	
AERC_Wood_Frame, !- Frame and Divider Name	
1, !- Multiplier	
4, !- Number of Vertices	
$2.500000000000,0.000000000000,1.350000000000$, !- X	, $=$ => Vertex $1\{\mathrm{~m}\}$
3.823210000000, 0.000000000000, 1.350000000000, !- X ,	,
3.823210000000, 0.000000000000, 2.023210000000 , !- X	,
2.500000000000, 0.000000000000, 2.023210000000; !-X	,

C. 2 Zone Infiltration:

The method of calculating air infiltration for the house with baseline windows, adiabatic windows and baseline windows with attachments consists of the following steps:
(1) Calculate the ELA of the whole house with baseline windows, ELA H_{H}
(2) Calculate the ELA of all baseline windows, ELAw
(3) Calculate the ELA of the whole house with adiabatic windows (no window infiltration), ЕLАно
(4) Calculate the ELA of all windows with attachment, ELAwa
(5) Calculate the ELA of the whole house with windows and attachments, ELA HwA

C.2.1 Calculating the ELA of the whole house with baseline windows, ELAH

$$
\begin{gather*}
E L A_{H}=\frac{Q_{50}\left[\frac{\Delta P_{4}}{\Delta P_{50}}\right]^{n}}{\left[\frac{2 \Delta P_{4}}{\rho}\right]^{0.5}} \times 10000 \tag{I.1}\\
Q_{50}=\frac{V_{H} \cdot A C H_{50}}{3600} \tag{I.2}
\end{gather*}
$$

Where:

$$
\begin{aligned}
\left.E L \mathrm{~cm}^{2}\right) & =\text { Effective leakage area of the whole house with baseline windows, } \\
Q_{50} & =\text { Total house infiltration at } 50 \mathrm{~Pa},\left(\mathrm{~m}^{3} / \mathrm{s}\right) \\
\Delta P_{50} & =50 \text { Pa test pressure for windows, }(\mathrm{Pa}) \\
\Delta P_{4} & =4 \text { Pa used as baseline for comparison, }(\mathrm{Pa}) \\
n & =0.65 ; \text { Flow exponent }[-] \\
\rho & =1.29 ; \text { Air density at standard temp. \& press., }\left(\mathrm{kg} / \mathrm{m}^{3}\right) \\
V_{H} & =\text { The volume of the house, }\left(\mathrm{m}^{3}\right) \\
A C H_{50} & =\text { Air changes per hour at } 50 \mathrm{~Pa}
\end{aligned}
$$

C.2.2 Calculating the ELA of all baseline windows, ELAw

$$
\begin{gather*}
E L A_{W}=\frac{Q_{W 75}\left[\frac{\Delta P_{4}}{\Delta P_{75}}\right]^{n}}{\left[\frac{2 \Delta P_{4}}{\rho}\right]^{0.5}} \times 10000 \tag{I.3}\\
Q_{W 75}=q_{W 75} \cdot A_{W} \tag{I.4}
\end{gather*}
$$

Where:
$E L A_{W}=$ Effective leakage area of all baseline windows, $\left(\mathrm{cm}^{2}\right)$
$Q_{W 75}=$ Total baseline window infiltration at $75 \mathrm{~Pa},\left(\mathrm{~m}^{3} / \mathrm{s}\right)$
$\Delta P_{75}=75$ Pa test pressure for windows, (Pa)
$q_{W 75}=0.01016 \mathrm{~m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)\left(2.0 \mathrm{cfm} / \mathrm{ft}^{2}\right)$; The infiltration per unit area of baseline window at $75 \mathrm{~Pa},\left(\mathrm{~m}^{3} / \mathrm{s} \cdot \mathrm{m}^{2}\right)$
$A_{w} \quad=$ Total window area, $\left(\mathrm{m}^{2}\right)$

C.2.3 Calculating the ELA of the whole house without windows, ELAно

$$
\begin{equation*}
E L A_{H O}=E L A_{H}-E L A_{W} \tag{I.5}
\end{equation*}
$$

C.2.4 Calculating the ELA of windows with attachments, ELAwa

$$
\begin{gather*}
E L A_{W A}=\frac{Q_{W A 75}\left[\frac{\Delta P_{4}}{\Delta P_{75}}\right]^{n}}{\left[\frac{2 \Delta P_{4}}{\rho}\right]^{0.5}} \cdot 10000 \tag{I.6}\\
Q_{W A 75}=q_{W A 75} \cdot A_{W} \tag{I.7}
\end{gather*}
$$

Where:
$E L A_{W A}=$ Effective leakage area of all windows with attachment, $\left(\mathrm{cm}^{2}\right)$
$Q_{75 W A}=$ Total infiltration of the windows with attachment at $75 \mathrm{~Pa},\left(\mathrm{~m}^{3} / \mathrm{s}\right)$
$q_{\text {WA75 }}=$ The measured air infiltration per unit area of the window with attachment at 75 Pa , also known as air leakage measurement; [$\left.\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)\right]$
Conversion of measured air leakage from IP units ($\mathrm{cfm} / \mathrm{sf}^{2}$) to SI units $\left(\mathrm{m}^{3} /\left(\mathrm{s} \cdot \mathrm{m}^{2}\right)\right.$) is given by. This quantity is specified as input data in AERCalc for infiltration of window attachment product (baseline window plus window attachment):

$$
q_{W A 75}(S I)=0.00508 \cdot q_{W A 75}(I P)
$$

Where the conversion factor 0.00508 is the result of the following conversion action: (ft to $\mathrm{m}) /(\mathrm{min}$ to sec$)$, or $0.3048 / 60$.

C.2.5 Calculating the ELA of the whole house with window and attachment, ELAhwa

$$
\begin{equation*}
E L A_{H W A}=E L A_{H O}+E L A_{W A} \tag{I.8}
\end{equation*}
$$

Numerical values for the typical house and baseline window in AERCalc air:

$$
\begin{gather*}
\mathrm{V}_{\mathrm{H}}=577.6288 \mathrm{~m}^{3} \tag{I.9}\\
\mathrm{ACH}_{50 _} \text {cooling }=101 / \mathrm{hr} \tag{I.10}\\
\mathrm{ACH}_{50 _} \text {heating }=71 / \mathrm{hr} \tag{I.11}\\
\text { qW75 }^{2}=0.01016 \mathrm{~m}^{3} /\left(\mathrm{s} \cdot \mathrm{~m}^{2}\right) \tag{I.12}\\
\mathrm{A}_{\mathrm{w}}=33.6 \mathrm{~m}^{2} \tag{I.13}
\end{gather*}
$$

For cooling climate:

$$
\begin{align*}
& E L A_{H O}=1,044 \mathrm{~cm}^{2} \\
& E L A_{H W A}=1,044+E L A_{W A} \mathrm{~cm}^{2} \tag{I.14}
\end{align*}
$$

For example, if the measured air infiltration of the window with attachment is $1 \mathrm{cfm} / \mathrm{sf}^{2}$, then:

ELAнwa equals to $1146 \mathrm{~cm}^{2}$, this value should be inputted in the ELA filed of EnergyPlus IDF files for cooling simulation.

$$
E L A_{W A}=\frac{1 \cdot 0.00508 \cdot 33.6 \cdot\left[\frac{4}{75}\right]^{0.65}}{\left[\frac{8}{1.29}\right]^{0.5}} \cdot 10000=101.977 \mathrm{~cm}^{2}
$$

Therefore,

$$
E L A_{H W A}=1,044+101.977=1,145.997 \mathrm{~cm}^{2}
$$

For heating climate calculation:

$$
\begin{align*}
E L A_{H 0} & =669 \mathrm{~cm}^{2} \\
E L A_{H W A} & =669+E L A_{W A}\left(\mathrm{~cm}^{2}\right) \tag{I.15}
\end{align*}
$$

For the same example the infiltration for the house with window attachments will be:

$$
E L A_{H W A}=669+101.977=770.997 \mathrm{~cm}^{2}
$$

Baseline window and half-deployed window infiltration include file for Houston (Air infiltration baseline Houston.inc):

ZoneInfiltration:EffectiveLeakageArea, Living_ShermanGrimsrud_unit1, !- Name living_unit1, !-Zone Name always_avail, !- Schedule Name 0.00029, !- Stack Coefficient 0.000231 !- Wind Coefficient
B and H: Baseline window run and half-deployed window run: the effective air leakage area (ELA) is 1044+ELAw in Houston. ELAw is 204.

Baseline window and half-deployed window infiltration include file for Minneapolis (Air infiltration baseline Minneapolis.inc):

ZoneInfiltration:EffectiveLeakageArea, Living_ShermanGrimsrud_unit1, !-Name living_unit1, always_avail,
873, !- Sone Name
0.00029, !-Effective Air Leakage Area $0.000231 ;$!-Stack Coefficient

Adiabatic window infiltration include file for Houston (Air infiltration adiabatic Houston.inc):

ZoneInfiltration:EffectiveLeakageArea, Living_ShermanGrimsrud_unit1, !- Name living_unit1, !-Zone Name
B and H: Baseline window run and half-deployed window run: the effective air leakage area (ELA) is 669+ELAw in Minneapolis. ELAw is 204.

A: Adiabatic window run: the effective air leakage area (ELA) is 1044 in Houston.
always_avail, !-Schedule Name
0.00029, !- Stack Coefficient
0.000231; !- Wind Coefficient

Adiabatic window infiltration include file for Minneapolis
(Air infiltration adiabatic Minneapolis.inc):

ZoneInfiltration:EffectiveLeakageArea, Living_ShermanGrimsrud_unit1, !- Name living_unit1, !- Zone Name always_avail, !-schedule Name 669, !- Effective Air Leakage Area \{cm2\} 0.00029, !- Stack Coefficient 0.000231; !- Wind Coefficient

Fully-deployed window infiltration include file for Houston (Air infiltration user input Houston.inc):

ZoneInfiltration:EffectiveLeakageArea,

 Living_ShermanGrimsrud_unit1, !- Name living_unit1, !- Zone Name always_avail, !- Schedule Name $1044+$ ELA $_{s}$!-Effective Air Leaka 0.00029, !- Stack Coefficient 0.000231; !- Wind CoefficientA: Adiabatic window run: the effective air leakage area (ELA) is 669 in Minneapolis.
necessary to convert the user-input air leakage to the effective leakage area of the whole house (ELAHwA)at the back-end before starting simulation. In addition to this conversion, unit conversion will often be required, since most common way of reporting AL is in IP units of $c f m / s f^{2}$. The methodology of converting AL into ELAHwA was illustrated in above.

C. 3 HVAC:

HVAC System for Houston

- Red highlight: System_autosize_Houston.inc
- Yellow highlight: System_sizing_Houston.inc

Sizing:Systen, Central System_unit1, Sensible,	!- AirLoop Name :- Type of Load to Size On	
autosize, $\frac{\text { - Design Outdoor Air Flow Rate \{m3/5\} }}{}$		1, for baseline window run, this
0.652,	?- Design Outdoor Air Flow Rate \{m3/s\}	
1, :- Central Heating Maximun System Air Flow Ratio		field keeps autosize, for other
7 ,	!- Preheat Design Temperature \{C\}	
0. 088, 11,	:- Preheat Design Hunidity Ratio \{kguater/kgDryai :- Precool Design Temperature \{c\}	runs, viz. adiabatic window run,
0. 088 ,	:- Precool Design Hunidity Ratio \{kgWater/kgDry	shade fully deployed run and
12,	:- Central Cooling Design Supply Air Temperature	
50,	:- Central Heating Design Supply Air Temperature	shade half deployed run, this
NonCoincident, No,	:- Type of Zone Sum to Use	field replaces with 0.652
No,	:- 100\% Outdoor air in Heating	
0.008 ,	:- Central Cooling Design Supply Air Humidity Rat	
0.008 ,	:- Central Heating Design Supply Air Humidity Rat	
designday,	:- Cooling Supply fir Flow Rate Method	
	:- Cooling Supply Air Flow Rate \{n3/s\}	
,	!- Cooling Supply Air Flow Rate Per Floor area	2, for baseline window run, this
,	:- Cooling Fraction of Autosized Cooling Supply :- Cooling Supply fir Flow Rate Per Unit Cooling	
designday,	- Heating Supply Air Flow Rate Method	field keeps autosize, for other
	:- Heating Supply fir flow Rate \{n3/s\}	runs, this field replaces with
	!- Heating Supply Air Flow Rate Per Floor frea	
	:- Heating Fraction of Autosized Heating Supply	9485.25
,	:- Heating Fraction of Autosized Cooling Supply	
	?- Heating Supply Air Flow Rate Per Unit Heating	
ZoneSun, 8.5 - System Outdoor Air Method		
CoolingDesignCapacity, :- Cooling Design Capacity Method		
autosize, :-Cooling Design Capacity \{U\}		
9485.25,	:- Cooling Design Capacity \{ W\}	3 , for baseline window run, this
	:- Cooling Design Capacity Per Floor Area \{ $/$ /m2\}	
HeatingDesignCapacity,	:- Fraction of Autosized Cooling Design Capacity :- Heating Design Capacity-Method	field keeps autosize, for other
autosize, :- Heating Design Capacity $\langle W\}$		runs, this field replaces with
7126.4, !- Heating Design Capacity $\{W\}$!- Heating Design Capacity Per Floor Area $\{\mathrm{W} / \mathrm{m} 2\}$!- Fraction of Autosized Heating Design Capacity		
		7126.4
AirTerminal:SingleDuct:Uncontrolled,		4, for baseline window run, this
ZoneDirectair_unit	!- Name	field keeps autosize, for other
always_avail, Zone Inlet Node	!- Auailability Schedule Name 1, :- Zone Supply Air Node Name	
autosize;	?- Maximun Air Flow Rate \{m3/s\}	runs, this field replaces with
0.652;	:- Maximum Air Flow Rate $\{\mathrm{m} 3 / \mathrm{s}$ \}	0.652

Coil:Cooling:DX:SingleSpeed,	
DX Cooling Coil_unit1,	!- Name
always_auail,	!- Auailability Schedule Name
autosize,	?- Gross Rated Total Cooling Capacity
13131.31,	!- Gross Rated Total Cooling Capacity
autosize,	:- Gross Rated Sensible Heat Ratio
0.733253 ,	!-Gross Rated Sensible Heat Ratio
2.70,	:-Gross Rated Cooling CoP \{W/W\}
autosize, !- Rated Air Flow Rate \{m3/s	
0.652, <	:- Rated Air Flow Rate \{m3/5\}
Cooling Coil Air Inlet	!- Rated Euaporator Fan Power Per Uolt de_unit1, !- Air Inlet Node Name
Heating Coil fir Inlet N	de_unit1, !- Air Outlet Node Name
HPACCoolCapFT,	!- Total Cooling Capacity Function of
HPACCoollapFFF,	!- Total Cooling Capacity Function of
HPACCOOLEIRFT,	:- Energy Input Ratio Function of Temf
HPACCOOLEIRFFF,	!- Energy Input Ratio Function of Flot
HPACCOOLPLFFPLR;	?- Part Load Fraction Correlation Cur

5, for baseline window run, this
field keeps autosize, for other
runs, this field replaces with
13131.31
6, for baseline window run, this
field keeps autosize, for other
runs, this field replaces with
0.733253
7, for baseline window run, this
field keeps autosize, for other
runs, this field replaces with
0.652

Fan:0n0ff,

Supply Fan_unit1,	! - Name
$0.7,$:- Auailability Schedule Name !- Fan Total Efficiency
408,	?- Pressure Rise \{Pa\}
autosize, !- Maximum Flow Rate \{m3/	
0.652,	!- Maximum Flow Rate \{m3/s\}
0.8,	!- Motor Efficiency
1,	:- Motor In Airstream Fractio
air loop inlet node_unit1, ! - Air Inlet Node Name	
cooling coil air	de_unit1, !- Air Outlet Node
	!- Fan Power Ratio Function
	?- Fan Efficiency Ratio Functi
General;	!- End-Use Subcategory

8, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.652

General; :- End-Use Subcategory

Coil:Heating:DX:SingleSpeed,
Main DX Heating Coil_unit1, !- Name

Heating Coil Air Inlet Node_unit1, !- Air Inlet Node Name
Supp Heating Coil Air Inlet Node_unit1, :- Air Outlet Node N.
HPACHeatCapFT,
HPACHeatCapFFF,
HPACHeatEIRFT,
HPACHeatEIRFFF, HPACCOOLPLFFPLR,
Defrost_EIR_FT,

-17.78,

5.0,
200.8,
10.0,

ReverseCycle, OnDemand, ;
:- Total Heating Capacity Function o
:- Total Heating Capacity Function o
:- Energy Input Ratio Function of Tel
:- Energy Input Ratio Function of Fl_{1}
!- Part Load Fraction Correlation Cui
:- Defrost Energy Input Ratio Functi
:- Minimum Outdoor Dry-Bulb Temperat
!- Outdoor Dry-Bulb Temperature to T_{1}
:- Maximum Outdoor Dry-Bulb Temperat
:- Crankcase Heater Capacity \{W\}
!- Maximun Outdoor Dry-Bulb Temperat।
:- Defrost Strategy
:- Defrost Control
:- Defrost Time Period Fraction
?- Resistive Defrost Heater Capacity

9, for baseline window run, this field keeps autosize, for other runs, this field replaces with 13131.31

10, for baseline window run, this field keeps autosize, for other runs, this field replaces with

11, for baseline window run, this field keeps autosize, for other runs, this field replaces with 7910.07

Abstract

12, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.652

AirLoopHUAC :UnitaryHeatPump : AirToAir,	
Heat Punp_unit1,	!- Nane
always_auail,	:- Auailability Schedule Name
Air Loop Inlet node_unity, !- Air Inlet Node Name	
Air Loop Outlet Node_unit1, :- Air Outlet Node Nane	
autosize,	
0.652 ,	!- Supply Air Flow Rate During Cooling Operat:
autosize, \quad - Supply fir Flow Rate During Heating	
0.6, :- Supply Air Flow Rate When No Cooling or Heat	
living_unit1, !- Controlling Zone or Thermostat Location	
Fan:0n0ff, - Supply Air Fan 0bject Typ	
Supply Fan_unit1,	!- Supply Air Fan Name
Coil:Heating: DX :SingleSpeed, - - Heating Coil object Type	
Main DX Heating Coil_unit1, :- Heating Coil Name	
Coil:Cooling:DX:SingleSpeed, :- Cooling Coil object Type	
DX Cooling Coil_unit1,	!- Cooling Coil Nane
Coil:Heating:Electric,	?- Supplenental Heating Coil Object Typ
Supp Heating Coil_unit1,	:- Supplemental Heating Coil Nane
50,	:- Maximun Supply Air Temperature from Supplent
10,	!- Maximun Outdoor Dry-Bulb Temperature for Sul
BlowThrough,	!- Fan Placenent
fan_cycle;	:- Supply Air Fan Operating Mode Schedule Nane

13, for baseline window run, this
field keeps autosize, for other
runs, this field replaces with
0.652
14, for baseline window run, this
field keeps autosize, for other
runs, this field replaces with
0.652

Branch,
Air Loop Main Branch_unit1, :- Name

Pump:UariableSpeed,
Mains Pressure_unit1, !- Name
Mains Inlet Node_unit1, !- Inlet Node Name
Mains Pressure Outlet Node_unit1, :- Outlet Node Name

autosize,	?- Design Maximum Flow Rate \{m3/s\}
0.030909 , く	!- Design Maximun Flow Rate \{m3/s\}
179352,	:- Design Pump Head \{Pa\}
autosize,	:- Design Power Consumption \{V\}
0.9,	?- Motor Efficiency
©,	!- Fraction of Motor Inefficiencies
©,	?- Coefficient 1 of the Part Load P
1,	? - Coefficient 2 of the Part Load P
0 ,	? - Coefficient 3 of the Part Load P
©,	?- Coefficient 4 of the Part Load P
©,	:- Design Minimun Flow Rate \{m3/s\}
Intermittent;	?- Pump Control Type

[^0]| WaterHeater:Mixed, | |
| :---: | :---: |
| Water Heater_unit1, | !- Name |
| 0.196841372 , | !- Tank Volume \{m3\} |
| dhw_setpt, | :- Setpoint Temperature Schedule Name |
| 2 , | :- Deadband Temperature Difference \{deltac\} |
| 50, | !- Maximum Temperature Limit 17 , for baseline window run, this |
| autosize, | ?- Heater Maximum Capacity ${ }^{\text {\% }}$ |
| 5500, < | ?- Heater Maximum Capacity \{ W |
| ©, | !- Heater Minimum Capacity \{ W runs, this field replaces with |
| ©, | !- Heater Ignition Minimum F1 |
| | !- Heater Ignition Delay \{s\} 5500 |
| electricity, | !- Heater Fuel Type |
| 1, | !- Heater Thermal Efficiency |
| | !- Part Load Factor Curue Name |
| , | !- Off Cycle Parasitic Fuel Consumption Rate \{V\} |
| , | !- Off Cycle Parasitic Fuel Type |
| , | !- Off Cycle Parasitic Heat Fraction to Tank |
| , | :- On Cycle Parasitic Fuel Consumption Rate \{ W\} |
| , | :- On Cycle Parasitic Fuel Type |
| | :- On Cycle Parasitic Heat Fraction to Tank |
| Zone, | !- Ambient Temperature Indicator |
| living_unit1, | !- Ambient Temperature Schedule Name |
| | !- Ambient Temperature Zone Name |
| 1.3306616, | !- Ambient Temperature Outdoor Air Node Name |
| | :- Off Cycle Loss Coefficient to Ambient Temperature \{W/K\} |
| 1 , | :- Off Cycle Loss Fraction to Zone |
| 1.3306616, | :- On Cycle Loss Coefficient to Ambient Temperature \{ $W / K\}$ |
| | !- On Cycle Loss Fraction to Zone |
| 0, | !- Peak Use Flow Rate \{m3/s\} |
| , | :- Use Flow Rate Fraction sch 18, for baseline window run, this |
| | :- Cold Water Supply Temperat field keeps autosize for other |
| Water Heater use inlet node_unit1, :- Use side Inlet field keeps autosize, for other | |
| Water Heater use outlet node_unit1, !- Use side outle runs, this field replaces with | |
| 1 , | !- Use Side Effectiveness
 :- Source Side Inlet Node Nam |
| | :- Source Side Outlet Node Na |
| 1, | :- Source Side Effectiveness |
| autosize, | ?- Use Side Design Flou Rate \{m3/s\} |
| 0.008089, | !- Use Side Design Flow Rate \{m3/s\} |
| $\begin{aligned} & 0, \\ & 1.5 ; \end{aligned}$ | !- Source Side Design Flow Rate \{ $\mathrm{m} 3 / \mathrm{s}$ \} |
| | !- Indirect Water Heating Recovery Time \{hr\} |

HVAC System for Minneapolis

- Red highlight: System_autosize_Minneapolis.inc
- Yellow highlight: System_sizing_Minneapolis.inc

```Sizing:System, Central System_unit1, Sensible,```	!- AirLoop Name   !- Type of Load to Size On	1, for baseline window run, this field keeps autosize, for other
autosize,	?- Design Outdoor Air Flow Rate \{m3/s\}	
6.563,	?- Design Outdoor Air Flow Rate \{m3/s\}	runs, viz. adiabatic window run,
1,	?- Central Heating Maximum System Air Flow	
7,	:- Preheat Design Temperature \{C	shade fully-deployed run and
0.008 ,	? - Preheat Design Humidity Ratio \{kgWater/I	
11,	:- Precool Design Temperature \{C\}	shade half-deployed run, this
0.008,	:- Precool Design Humidity Ratio \{kgWater/I	
12,	:- Central Cooling Design Supply Air Tempei	field replaces with 0.563
50,	:- Central Heating Design Supply Air Tempeı	
NonCoincident,	:- Type of Zone Sun to Use	
No,	!- 100\% Outdoor Air in Cooling	
No,	!- 100\% Outdoor Air in Heating	
0.008,	! - Central Cooling Design Supply Air Humid:	
0.008,	! - Central Heating Design Supply Air Humid:	
designday,	:- Cooling Supply Air Flow Rate Method	
,	:- Cooling Supply Air Flow Rate \{m3/s\}	
,	:- Cooling Supply Air Flow Rate Per Floor	
,	:- Cooling Fraction of Autosized Cooling S	aseline window run, this
' ${ }^{\text {cosignday }}$	!- Cooling Supply Air Flow Rate Per Unit C	field keeps autosize, for other
,	:- Heating Supply Air Flow Rate \{m3/s\}	
,	? - Heating Supply Air Flow Rate Per Floor	runs, this field replaces with
,	? - Heating Fraction of Autosized Heating Si	
,	? - Heating Fraction of Autosized Cooling Si	979.19
	? - Heating Supply Air Flow Rate Per Unit Hr	
ZoneSum,	:- Systen Outdoor Air Method	
0.5,	:- Zone Maximun Outdoor Air Fraction \{dimeı	
CoolingDesignCapacity,	:- Cooling Design Capacity Method	
autosize,	?- Cooling Design Capacity \{W\}	
7979.19, <	!- Cooling Design Capacity \{W\}	
HeatingDesignCapacity,	!- Cooling Design Capacity Per Floor Area   !- Fraction of Autosized Cooling Design Cal   ?- Heating Design Capacity Method	3, for baseline window run, this
autosize,	:- Heating Design Capacity $\{W\}$	field keeps autosize, for other
15123.39,	:- Heating Design Capacity \{W\}	runs, this field replaces with
,	:- Heating Design Capacity Per Floor Area	
,	:- Fraction of Autosized Heating Design Ca,	
;	?- Central Cooling Capacity Control Method	1.5123 .09



4, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.563



AirLoophuac,	
auailability list	?- Controller List Name   !- Auailability Manager List Name
autosize, ؛ ?- Design Supply Air Flo	
0.563, !- Design Supply Air Flow Rate \{m3/s\}	
Air Loop Branches_unit1, :- Branch List Name	
, !-Connector List Name	
Return Air Mixer Outlet_unit1, !- Demand Side Outlet Node I	
Zone Equipment Inlet Node_unit1, !- Demand Side Inlet Node	
Air Loop Outlet Node_unit1; !- Supply Side Outlet Node Nam	
$====$ ALL OBJ	IN CLASS: AIRLOOPHUAC: UNITARYHEATI
AirLoopHUAC:UnitaryHeatCool,	
ACandF_unit1,	- Name
alvays_avail,	:- Auailability Schedule Name
air loop inlet node	, !- Unitary System-Air Inlet Nod
air loop outlet node_	1, !- Unitary System Air Outlet Nt
fan_cycle,	!- Supply Air Fan Operating Mode Si
80,	:- Maximum Supply Air Temperature
autosize, :- Cooling Supply fir Flow Rate	
0.563, $<$ - Cooling Supply Air Flow Rate \{m	
autosize, :- Heating Supply fir Flow Rate	
0.563, \%- Heating Supply Air Flow Rate \{m3/s	
B, $\quad$ :- No Load Supply Air Flow Rate \{m:	
Fan:0n0ff, !- Supply Fan 0bject Type	
Supply Fan_unit1, :- Supply Fan Nan	
BlowThrough, !- Fan Placement	
Coil:Heating:gas, !- Heating Coil object Typ	
Main gas Heating Coil_unit1, :- Heating Coil Name	
Coil:Cooling:DX:SingleSpeed, !- Cooling Coil Object Typer	
DX Cooling Coil_unit1, !- Cooling Coil Name	
None;	!- Dehumidification Control Type

## 9, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.563

> 10, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.563

Branch,
Air Loop Main Branch unit1, :- Name
autosize, $\quad$ :- Maximun Flow Rate $\{\mathrm{m} 3 / \mathrm{s}\}$
0.563,
? - Maximun Flow Rate \{n3/s\}
AirLoopHUAC :UnitaryHeatCool, P-Component 1 object Type ACandF_unit1, $\quad$ - Component 1 Name
Air Loop Inlet Node_unit1, :- Component 1 Inlet Node Name Air loop outlet node_unit1, $\quad$ - Component 1 outlet Node Name ACTIUE; $\quad-$ Component 1 Branch Control Type
!- $============$ ALL OBJECTS IN CLASS: OUTDOORAIR:NODE ========= $=$

> 12, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.563

11, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.563

OutdoorAir: Node,
outside air inlet node_unit1, !- Name
0.914355487629293 ; :- Height Above Ground $\{\mathrm{m}\}$

OutdoorAir: Node,
outdoor air node_unit1, !- Name
1; :- Height Above Ground $\{\mathrm{m}\}$
!- $===========$ ALL OBJECTS IN CLASS: COIL:HEATING:GAS
13, for baseline window run, this field keeps autosize, for other runs, this field replaces with Main gas heating coil_unit1, !- Name
alvays_avail, !- Auailability Schedule Name
0.78, !-Gas Burner Efficiency



## Appendix D: Cooling and Heating Season Definition

Table D1. Cooling and Heating Season Definition for Heating and Cooling EP

Minneapolis			Houston		
	Start	End		Start	End
Winter	November 1	January 31	Winter	December 1	February 28
Spring	February 1	April 30	Spring	March 1	May 31
Summer	May 1	July 31	Summer	June 1	August 31
Autumn	August 1	October 31	Autumn	September 1	November 30
Heating	September 15	March 16	Heating	October 16	April 14
Cooling	March 17	September 14	Cooling	April 15	October 15

## Appendix E: ESCalc XML Schema

## ESCalc XML schema describes interface between AERCalc and calculation module ESCalc.

<?xml version="1.0" encoding="UTF-8"?>

<!-- edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:vc="http://www.w3.org/2007/XMLSchema-versioning"
elementFormDefault="qualified" attributeFormDefault="unqualified" version="1.1" vc:minVersion="1.1">
<xs:element name="ESCalc">
[xs:complexType](xs:complexType)
[xs:sequence](xs:sequence)
<xs:element name="Input" minOccurs="0">
[xs:annotation](xs:annotation)
[xs:documentation](xs:documentation)ESCalc Inputs</xs:documentation>
</xs:annotation>
[xs:complexType](xs:complexType)
[xs:sequence](xs:sequence)
<xs:element name="Selection" maxOccurs="3">
[xs:annotation](xs:annotation)
[xs:documentation](xs:documentation)Selection of calculation type. EA: Adiabatic Windows Run; EB: Baseline WIndows Runb;
ES: Window Attachment Run</xs:documentation>
</xs:annotation>
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:string">
<xs:minLength value="2"/>
<xs:maxLength value="2"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="Climate">
[xs:annotation](xs:annotation)
[xs:documentation](xs:documentation)Selection of climate. Cooling: Houston climate data and assumptions; Heating:
Minneapolis climate data and assumptions</xs:documentation>
</xs:annotation>
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:string">
<xs:minLength value="7"/>
<xs:maxLength value="7"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="AttachmentType" minOccurs="0">
[xs:annotation](xs:annotation)
[xs:documentation](xs:documentation)Selection of Attachment type. RollerShades; CellularShades; SolarScreens;
AppliedFilms; VenetianBlinds; VerticalBlinds; WindowPanels; and PleatedShades</xs:documentation> </xs:annotation>
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:string">
<xs:minLength value="12"/>
<xs:maxLength value="14"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="NoCSVFiles" type="xs:integer">
[xs:annotation](xs:annotation)
[xs:documentation](xs:documentation)Number of supplied CSV IDF files. 1 file for EA, EB, or ES for fixed attachments; 2 files
for 1D shades; and 7 files for 2D shades</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="CSVFile" maxOccurs="7">
[xs:complexType](xs:complexType)
[xs:sequence](xs:sequence)
<xs:element name="CSVFileName" type="xs:string">
[xs:annotation](xs:annotation)
[xs:documentation](xs:documentation)Arbitrary CSV File name for each E+ run</xs:documentation>
</xs:annotation>
</xs:element>
<xs:element name="DeploymentState" minOccurs="0">
[xs:annotation](xs:annotation)
[xs:documentation](xs:documentation)Deployment State: Open (only for 1-D and 2-D shades), Half (only for 1-D and 2-
D shades), or Full (for all shades)</xs:documentation>
</xs:annotation>
[xs:simpleType](xs:simpleType)
<xs:restriction base="xs:string">
<xs:minLength value="4"/>
<xs:maxLength value="4"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="SlatAngle" type="xs:integer" minOccurs="0">
[xs:annotation](xs:annotation)
[xs:documentation](xs:documentation)Slat Angle for Louvered Blinds: $0,-45,45,90</ x s$ :documentation>
</xs:annotation>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType> </xs:element>
<xs:element name="Output" minOccurs="0">
[xs:annotation](xs:annotation)
[xs:documentation](xs:documentation)ESCalc Outputs</xs:documentation>
</xs:annotation>
[xs:complexType](xs:complexType)
[xs:sequence](xs:sequence)
<xs:element name="E_HVAC" type="xs:float"/>
<xs:element name="E $\overline{\mathrm{P}}$ " type="xs:float" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:schema>
The following Figure shows schematic presentation of the Schema.


Figure E1. Schematic Presentation of the ESCalc Schema

Examples of the schema for fixed window attachment and venetian blinds products are shown next, respectively:

## Example of a fixed window attachment XML file:

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<!-- Based on XML schema ESCalc.xsd.-->
<ESCalc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ESCalc_v3.xsd">
 <lnput>
 <Selection>ES</Selection>
 <Climate>Houston</Climate>
 <AttachmentType>SolarScreens</AttachmentType>
 <NoCSVFiles>1</NoCSVFiles>
 <CSVFile>
 <CSVFileName>Test-File-Name-1_SS</CSVFileName>
 </CSVFile>
 </Input>
 <Output>
 <E_HVAC>115.92</E_HVAC>
 <EP>53.2</EP>
 </Output>
</ESCalc>
```


## Example of venetian blind window attachment XML file:

```
<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSpy v2016 rel. 2 sp1 (x64) (http://www.altova.com) by D. Charlie Curcija (Lawrence Berkeley National
Laboratory) -->
<!-- Based on XML schema ESCalc.xsd.-->
<ESCalc xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ESCalc_v3.xsd">
 <Input>
 <Selection>ES</Selection>
 <City>Minneapolis</City>
 <AttachmentType>VenetianBlinds</AttachmentType>
 <NoCSVFiles>7</NoCSVFiles>
 <CSVFile>
 <CSVFileName>Test-File-Name-2_VB_Open_0</CSVFileName>
 <DeploymentState>Full</DeploymentState>
 <SlatAngle>0</SlatAngle>
 </CSVFile>
 <CSVFile>
 <CSVFileName>Test-File-Name-2_VB_Full_-45</CSVFileName>
 <DeploymentState>Full</DeploymentState>
 <SlatAngle>-45</SlatAngle>
 </CSVFile>
 <CSVFile>
 <CSVFileName>Test-File-Name-2_VB_Full_45</CSVFileName>
 <DeploymentState>Full</DeploymentState>
 <SlatAngle>45</SlatAngle>
 </CSVFile>
 <CSVFile>
 <CSVFileName>Test-File-Name-2_VB_Full_90</CSVFileName>
 <DeploymentState>Full</DeploymentState>
 <SlatAngle>90</SlatAngle>
 </CSVFile>
 <CSVFile>
 <CSVFileName>Test-File-Name-2_VB_Half_-45</CSVFileName>
 <DeploymentState>Half</DeploymentState>
 <SlatAngle>-45</SlatAngle>
 </CSVFile>
 <CSVFile>
 <CSVFileName>Test-File-Name-2_VB_Half_45</CSVFileName>
 <DeploymentState>Half</DeploymentState>
 <SlatAngle>45</SlatAngle>
 </CSVFile>
 <CSVFile>
 <CSVFileName>Test-File-Name-2_VB_Half_90</CSVFileName>
 <DeploymentState>Half</DeploymentState>
 <SlatAngle>90</SlatAngle>
 </CSVFile>
 </Input>
 <Output>
 <E_HVAC>127.32</E_HVAC>
 <EP>34.6</EP>
 </Output>
</ESCalc>
```


# Appendix F: EnergyPlus Window configuration file for baseline window 

## B

!- Window_configuration_baseline.inc   !- There are 4 seperated windows on each floor each orientation
FenestrationSurface:Detailed,
Window_Idf1_1_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idf1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$2.500000000000,0.000000000000,0.600000000000,1-\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>$ Vertex 1 \{m\}
$3.823210000000,0.000000000000,0.600000000000,1-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
$3.823210000000,0.000000000000,1.273210000000,1-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$2.500000000000,0.000000000000,1.273210000000 ;$ - X,Y,Z ==> Vertex $4\{\mathrm{~m}\}$

FenestrationSurface:Detailed,
Window_ldf1_1_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_ldf1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
, !- View Factor to Ground
, !- View Factor to Ground
'AERC_Wood_Frame, !- Frame and Divider Name
1, !-Multiplier
4, !- Number of Vertices
$2.500000000000,0.000000000000,1.350000000000$, !- $\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>$ Vertex $1\{\mathrm{~m}\}$
$3.823210000000,0.000000000000,1.350000000000,!-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
$3.823210000000,0.000000000000,2.023210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$2.500000000000,0.000000000000,2.023210000000 ;$ !- $X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$
FenestrationSurface:Detailed,
Window_Idf1_2_Bot.unit1, !- Name
Window, $\quad$ !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idf1_1.unit1, !- Building Surface Name


FenestrationSurface:Detailed,
Window_Idf1_2_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_ldf1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
, !- View Factor to Ground
,' !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$6.600000000000,0.000000000000,1.350000000000,!-X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$
$7.923210000000,0.000000000000,1.350000000000,!-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
$7.923210000000,0.000000000000,2.023210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$
$6.600000000000,0.000000000000,2.023210000000 ;!-X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$


FenestrationSurface:Detailed,
Window_sdr1_1_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground


FenestrationSurface:Detailed,
Window_sdr1_1_Top.unit1, !- Name
Window, -- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$10.558580000000,2.500000000000,1.350000000000,!-X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$ $10.558580000000,3.823210000000,1.350000000000,!-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$ $10.558580000000,3.823210000000,2.023210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$ $10.558580000000,2.500000000000,2.023210000000 ;$ !- $\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>$ Vertex $4\{\mathrm{~m}\}$

## FenestrationSurface:Detailed,

## Window_sdr1_2_Bot.unit1, !- Name

Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_1.unit1, !- Building Surface Name !- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$10.558580000000,6.600000000000,0.600000000000,!-X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$ $10.558580000000,7.923210000000,0.600000000000,!-X, Y, Z==>$ Vertex $2\{m\}$ $10.558580000000,7.923210000000,1.273210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$ $10.558580000000,6.600000000000,1.273210000000 ;$ !- $\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>$ Vertex $4\{\mathrm{~m}\}$

FenestrationSurface:Detailed,
Window_sdr1_2_Top.unit1, !- Name
Window,

AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_1.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
'AERC_Wood_Frame, !- Frame and Divider Name
1, !-Multiplier
4, !- Number of Vertices
10.558580000000,6.600000000000,1.350000000000, !- X,Y,Z ==> Vertex 1 \{m\} $10.558580000000,7.923210000000,1.350000000000$, !- $X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$ $10.558580000000,7.923210000000,2.023210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$ $10.558580000000,6.600000000000,2.023210000000 ;$ !- $X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$

```
FenestrationSurface:Detailed,
 Window_sdl1_1_Bot.unit1,!- Name
 Window, !- Surface Type
 AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdl1_1.unit1, !- Building Surface Name
 !- Outside Boundary Condition Object
 !- View Factor to Ground
 !- Shading Control Name
AERC Wood Frame, !- Frame and Divider Name
1, -- !- Multiplier
4, !- Number of Vertices
0.000000000000,8.000000000000,0.600000000000, !- X,Y,Z ==> Vertex 1{m}
0.000000000000,6.676790000000,0.600000000000, !- X,Y,Z ==> Vertex 2{m}
0.000000000000,6.676790000000,1.273210000000,!- X,Y,Z ==> Vertex 3{m}
0.000000000000,8.000000000000,1.273210000000; !- X,Y,Z ==> Vertex 4{m}
```



FenestrationSurface:Detailed,
Window_Idf2_1_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idf1_2.unit1, !- Building Surface Name
, !- Outside Boundary Condition Object
, !- View Factor to Ground


FenestrationSurface:Detailed,
Window_Idf2_2_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idf1_2.unit1, !- Building Surface Name
, !- Outside Boundary Condition Object
, !- View Factor to Ground
, !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
$\begin{array}{ll}1, & \text { !- Multiplier } \\ 4, & \text { !- Number of Vertices }\end{array}$
$6.600000000000,0.000000000000,3.950000000000,!-X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$
$7.923210000000,0.000000000000,3.950000000000$, !- $X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$
$7.923210000000,0.000000000000,4.623210000000$, !- $\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>$ Vertex $3\{\mathrm{~m}\}$
$6.600000000000,0.000000000000,4.623210000000 ;$ !- $X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$
FenestrationSurface:Detailed,
Window_ldb2_1_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idb1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
AERC_Wood_Frame, !- Shading Control Name
1, !- Multiplier
4, !- Number of Vertices
$8.000000000000,10.558580000000,3.200000000000,!-X, Y, Z==>$ Vertex $1\{m\}$ $6.676790000000,10.558580000000,3.200000000000$, !- X,Y,Z ==> Vertex $2\{\mathrm{~m}\}$ $6.676790000000,10.558580000000,3.873210000000$, !- X,Y,Z ==> Vertex $3\{\mathrm{~m}\}$ $8.000000000000,10.558580000000,3.873210000000 ;$ !- $X, Y, Z==>$ Vertex $4\{m\}$

FenestrationSurface:Detailed,
Window_Idb2_1_Top.unit1, !- Name
Window, - !- Surface Type
AERC_Doubleclear_Baseline, !-Construction Name
Wall_Idb1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !-Multiplier
4, !- Number of Vertices
$8.000000000000,10.558580000000,3.950000000000$, !- $X, Y, Z==>$ Vertex $1\{m\}$ $6.676790000000,10.558580000000,3.950000000000$, !- X,Y,Z ==> Vertex $2\{\mathrm{~m}\}$ $6.676790000000,10.558580000000,4.623210000000$, !- X,Y,Z ==> Vertex $3\{\mathrm{~m}\}$ $8.000000000000,10.558580000000,4.623210000000 ;$ !- X,Y,Z ==> Vertex $4\{\mathrm{~m}\}$

```
FenestrationSurface:Detailed,
 Window_ldb2_2_Bot.unit1, !- Name
 Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idb1_2.unit1, !- Building Surface Name
 !- Outside Boundary Condition Object
 - View Factor to Ground
 !- Shading Control Name
 AERC_Wood_Frame, !- Frame and Divider Name
1, !-Multiplier
4, !- Number of Vertices
3.900000000000,10.558580000000,3.200000000000, !- X,Y,Z ==> Vertex 1 {m}
2.576790000000,10.558580000000,3.200000000000, !- X,Y,Z ==> Vertex 2{m}
2.576790000000,10.558580000000,3.873210000000,!- X,Y,Z ==> Vertex 3{m}
3.900000000000,10.558580000000,3.873210000000; !- X,Y,Z ==> Vertex 4{m}
FenestrationSurface:Detailed,
Window_ldb2_2_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_Idb1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4. !- Number of Vertices
\(3.900000000000,10.558580000000,3.950000000000,!-X, Y, Z==>\) Vertex \(1\{\mathrm{~m}\}\) \(2.576790000000,10.558580000000,3.950000000000,!-X, Y, Z==>\) Vertex \(2\{\mathrm{~m}\}\) \(2.576790000000,10.558580000000,4.623210000000,!-X, Y, Z==>\) Vertex \(3\{\mathrm{~m}\}\) \(3.900000000000,10.558580000000,4.623210000000 ;!-\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>\) Vertex \(4\{\mathrm{~m}\}\)
FenestrationSurface:Detailed,
Window_sdr2_1_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
, \(\quad\) !- View Factor to Ground
, \(\quad\) !- View Factor to Ground
'AERC_Wood_Frame, !- Frame and Divider Name
1, !-Multiplier
4, !- Number of Vertices
\(10.558580000000,2.500000000000,3.200000000000,!-X, Y, Z==>\) Vertex \(1\{m\}\)
\(10.558580000000,3.823210000000,3.200000000000,!-X, Y, Z==>\) Vertex \(2\{\mathrm{~m}\}\)
\(10.558580000000,3.823210000000,3.873210000000,!-X, Y, Z==>\) Vertex \(3\{\mathrm{~m}\}\)
\(10.558580000000,2.500000000000,3.873210000000 ;\) !- X,Y,Z ==> Vertex \(4\{\mathrm{~m}\}\)
FenestrationSurface:Detailed
Window_sdr2_1_Top.unit1, !- Name
Window, \(\quad\) !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
\(10.558580000000,2.500000000000,3.950000000000,!-X, Y, Z==>\) Vertex \(1\{\mathrm{~m}\}\)
\(10.558580000000,3.823210000000,3.950000000000,!-X, Y, Z==>\) Vertex \(2\{\mathrm{~m}\}\)
\(10.558580000000,3.823210000000,4.623210000000,!-X, Y, Z==>\) Vertex \(3\{\mathrm{~m}\}\)
\(10.558580000000,2.500000000000,4.623210000000 ;\) !- X,Y,Z ==> Vertex \(4\{\mathrm{~m}\}\)
```

FenestrationSurface:Detailed,
Window_sdr2_2_Bot.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
, !- View Factor to Ground


FenestrationSurface:Detailed,
Window_sdr2_2_Top.unit1, !- Name
Window, - !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdr1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$10.558580000000,6.600000000000,3.950000000000,!-X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$ $10.558580000000,7.923210000000,3.950000000000,!-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$ $10.558580000000,7.923210000000,4.623210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$ 10.558580000000,6.600000000000,4.623210000000; !- $\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>$ Vertex $4\{\mathrm{~m}\}$

## FenestrationSurface:Detailed,

## Window_sdl2_1_Bot.unit1, !- Name

Window, !-Surface Type
AERC_Doubleclear_Baseline, !-Construction Name
Wall_sdl1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4, !- Number of Vertices
$0.000000000000,8.000000000000,3.200000000000,!-X, Y, Z==>$ Vertex $1\{m\}$ $0.000000000000,6.676790000000,3.200000000000,!-X, Y, Z==>$ Vertex $2\{m\}$ $0.000000000000,6.676790000000,3.873210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$ $0.000000000000,8.000000000000,3.873210000000 ;$ !- $X, Y, Z==>$ Vertex $4\{\mathrm{~m}\}$

FenestrationSurface:Detailed,
Window_sdl2_1_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdl1_2.unit1, !- Building Surface Name
!- Outside Boundary Condition Object
!- View Factor to Ground
'AERC_Wood_Frame, !- Shading Control Name

1,	$!-$ Multiplier
4,	$!-N u m b e r ~ o f ~ V e r t i c e s ~$

$0.000000000000,8.000000000000,3.950000000000,!-X, Y, Z==>$ Vertex $1\{\mathrm{~m}\}$ $0.000000000000,6.676790000000,3.950000000000,!-X, Y, Z==>$ Vertex $2\{\mathrm{~m}\}$ $0.000000000000,6.676790000000,4.623210000000,!-X, Y, Z==>$ Vertex $3\{\mathrm{~m}\}$ $0.000000000000,8.000000000000,4.623210000000 ;$ !- $\mathrm{X}, \mathrm{Y}, \mathrm{Z}==>$ Vertex $4\{\mathrm{~m}\}$

```
FenestrationSurface:Detailed,
 Window_sdl2_2_Bot.unit1,!- Name
 Window, !- Surface Type
 AERC_Doubleclear_Baseline, !- Construction Name
Wall_sdl1_2.unit1, !- Building Surface Name
 !- Outside Boundary Condition Object
 !- View Factor to Ground
 !- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !-Multiplier
4, !- Number of Vertices
0.000000000000,3.900000000000,3.200000000000, !- X,Y,Z ==> Vertex 1{m}
0.000000000000,2.576790000000,3.200000000000,!- X,Y,Z ==> Vertex 2{m}
0.000000000000,2.576790000000,3.873210000000,!-X,Y,Z ==> Vertex 3{m}
0.000000000000,3.900000000000,3.873210000000; !- X,Y,Z ==> Vertex 4{m}
```

```
FenestrationSurface:Detailed,
 Window_sdl2_2_Top.unit1, !- Name
Window, !- Surface Type
AERC_Doubleclear_Baseline, !- Construction Name
Wall sdl11 2.unit1, !- Building Surface Name
 !- Outside Boundary Condition Object
!-View Factor to Ground
!- Shading Control Name
AERC_Wood_Frame, !- Frame and Divider Name
1, !- Multiplier
4,}\quad!-Number of Vertice
0.000000000000,3.900000000000,3.950000000000, !- X,Y,Z ==> Vertex 1 {m}
0.000000000000,2.576790000000,3.950000000000, !- X,Y,Z ==> Vertex 2{m}
0.000000000000,2.576790000000,4.623210000000,!- X,Y,Z ==> Vertex 3{m}
0.000000000000,3.900000000000,4.623210000000; !- X,Y,Z ==> Vertex 4{m}
```


## Appendix G: Energy Use for Adiabatic and Baseline Window Runs

In AERCalc 1.1 baseline energy use is calculated for adiabatic, EA and baseline window cases, Eв. are calculated once and applied for calculations of EPн and EPc.

## Adiabatic Windows Runs

The pre-calculated values for $E_{A}$ are:
Houston: $\mathrm{E}_{\mathrm{A}}=58.9154 \mathrm{GJ}$
Minneapolis: $\mathrm{EA}_{\mathrm{A}}=90.5778 \mathrm{GJ}$

## Baseline Windows Runs

The pre-calculated values for $\mathrm{E}_{\text {в }}$ are:
Houston: $\mathrm{E}_{\mathrm{B}}=116.2636$ GJ
Minneapolis: $\mathrm{EB}_{\mathrm{B}}=122.8133 \mathrm{GJ}$

## Appendix H - Modeling Procedure for Window Awnings

(Reproduced from "Modeling Procedure for Window Awnings", Lawrence Berkeley National Laboratory, Berkeley CA, 2020.)

## Appendix H - Modeling Procedure for Window Awnings

(Reproduced from "Modeling Procedure for Window Awnings", Lawrence Berkeley National Laboratory, Berkeley CA, 2020.)

Modeling Procedure for Window Awnings


Lawrence Berkeley National Laboratory
Environmental Energy and Technology Division
Windows and Daylighting Group
Berkeley，California

Charlie Curcija，Simon Vidanovic，Taoning Wang，Robin Mitchell with contributions from the AERC Technical Committee

September 22， 2020

## TABLE OF CONTENTS:

INTRODUCTION. ..... 3
DETERMINATION OF SHGCANNUAL $A N D ~ V T_{A N N U A L}$. ..... 3
AWNINGS GEOMETRY AND MODELING PARAMETERS ..... 7
Window.rad definition: ..... 8
Awning.rad definition ..... 9
EP CALCULATION ..... 12
Naming Convention: ..... 13
REFERENCES: ..... 14
ACKNOWLEDGEMENTS ..... 15

## INTRODUCTION

Awnings are special types of shading systems that are projecting from the window, rather than being co-planar with the glazing surface. This required different approach from other co-planar shading systems, so that calculated SHGC (Solar Heat Gain Coefficient) and VT (Visible Transmittance) are based on the blend of typical sun angles, rather than standard normal incidence and they will be labeled SHGCannual and $\mathrm{VT}_{\text {ANNUAL }}$. The set of angles used for awnings is based on prior work for tubular daylighting devices, where normal incidence also do not represent good reference. SHGCannual and VTannual are intended to be used as a indices of performance for awnings as a direct comparison to the normal incidence SHGC and VT, in the same manner that they are used for tubular daylighting devices. In this document, SHGCannual and VTannual will be interchangeably used with SHGC and VT, representing the same quantity.

## DETERMINATION OF SHGC annual AND $V T_{\text {annual }}$

SHGCannual and VTannual in case of awnings will be calculated as an average over multiple angles of incidence, based on the set of solar angles, developed earlier for tubular daylighting devices (Goudey et al. 2012, McCluney and duPont 2010), shown in Table 1. Solar-Surface angle definitions are shown in Figure 1 (ASHRAE 2017).

Table 1. Set of angles and time-constants for tubular daylighting devices (TDD)

			Solar Azimuth ( $\varphi$ )		
	range applied		$=0$ to $<15$	=15 to <45	$=45$ to < 75
	Angle	Middle point	0	30	60
	$=15$ to <25	20	0.000	0.106	0.084
	$=25$ to <35	30	0.074	0.097	0.072
	$=35$ to <45	40	0.034	0.064	0.068
	=45 to <55	50	0.026	0.053	0.078
	=55 to <65	60	0.023	0.051	0.074
	$=65$ to <75	70	0.029	0.055	0.012

Solar altitude angle is measured from the horizontal plane (ground) and is equal to $0^{\circ}$ for Sun at the horizon (parallel to the ground) and is equal to $90^{\circ}$ for the Sun directly above.


Figure 1: Solar-Surface Angle Definitions
Sum of all time-constants from the above table add to 1.000. Based on these and considering that there may not be symmetry in terms of Azimuth, the following table (Table 2) of sun angles and time constants is developed for awnings that includes both East and West Solar positions
Table 2. Time-constants ( $W_{i}$ ) for the set of angles for awnings

				Azimuth ( $\varphi$ )			
$\begin{aligned} & \bar{O} \\ & \frac{0}{0} \\ & \frac{1}{7} \\ & \frac{1}{6} \end{aligned}$	range applied		$75>\varphi \leq 45$	$45>\varphi \leq 15$	$15>\varphi \leq-15$	$-15>\varphi \leq-45$	$-45>\varphi \leq-75$
	Angle	Middle point	60	30	0	-30	-60
	$25>\beta \leq 15$	20	0.042	0.053	0	0.053	0.042
	$35>\beta \leq 25$	30	0.036	0.0485	0.074	0.0485	0.036
	$45>\beta \leq 35$	40	0.034	0.032	0.034	0.032	0.034
	$55>\beta \leq 45$	50	0.039	0.0265	0.026	0.0265	0.039
	$65>\beta \leq 55$	60	0.037	0.0255	0.023	0.0255	0.037
	$75>\beta \leq 65$	70	0.006	0.0275	0.029	0.0275	0.006

The sum of all of time constants, $W_{i}$ is still 1.000.
Optical calculations are done using BSDF (Bi-Directional Scattering Distribution Function) definition of incident and outgoing direction of radiation, where each layer is represented by the BSDF matrix. Figure 2 and Figure 3 shows BSDF representation of incident and outgoing hemisphere, where around the plane of a shading layer.


Figure 2: Incoming directions coordinate system


Figure 3: Outgoing directions coordinate system (transmittance and reflectance)
Each BSDF hemisphere is represented by so-called Klems basis, which has 149 incoming and outgoing patches. These patches are represented and numbered in the 2D representation of each hemisphere, shown in Figure 4.


Figure 4: BSDF patches for $a$ ) incoming and b) outgoing directions.
In order to apply set of angles shown in Table 2, conversion between BSDF patches and set of angles is done, resulting in the following set of patches.

Table 3. BSDF Patch Number Mapping for the Set of Angles for Awnings

				Azimuth ( $\varphi$ )			
	range applied		$75>\varphi \leq 45$	$45>\varphi \leq 15$	$15>\varphi \leq-15$	$-15>\varphi \leq-45$	$-45>\varphi \leq-75$
	Angle	Middle point	60	30	0	-30	-60
	$25>\beta \leq 15$	20	107	60	22	68	117
	$35>\beta \leq 25$	30	108	61	41	67	116
	$45>\beta \leq 35$	40	128	86	64	90	132
	$55>\beta \leq 45$	50	128	86	88	90	132
	$65>\beta \leq 55$	60	129	111	112	113	131
	$75>\beta \leq 65$	70	129	111	130	113	131

Note that the center of each Klems patch corresponds to the closest altitude and azimuth angle set, as the Klems BSDF definition is fixed and cannot be adjusted to coincide with those angles. The combined system (combined glazing and shading system) properties are calculated using matrix multiplication (Klems 1994a and Klems 1994b) where each BSDF matrix represents individual layer (whether it is glass or shading layer) and the resulting BSDF matrix represents optical properties of the combined glazing and shading system.

For awnings, separate Radiance ray-tracing modeling is done to generate BSDF of the awning, in effect reducing all of the awnings geometry and optical properties of awnings material into the equivalent shading layer as if it was parallel to the glass. This allows the application of matrix multiplication for awnings. The resulting BSDF after matrix multiplication is used to calculate Tsol and Tvis of the window with the awning, as well as SHGC. Both standard VT and SHGC are calculated for normal incidence (patch 1 in the BSDF), as well as annual values of these quantities.

The SHGCannual and $V T_{a n n u a l}$ are calculated from the set of angles in Table 2 (set of patches in Table 3). If we label time constants as $W_{i}$, the equations for SHGCAnnual and $V T_{\text {annaul }}$ become:

$$
\begin{aligned}
& S H G C_{A N N U A L}=\sum_{i=1}^{29}\left(T_{\text {sol }, i}+\frac{q_{i n, i\left(I_{s}=0\right)}-q_{i n}}{I_{s, i}}\right) \cdot W_{i} \\
& V T_{A N N U A L}=\sum_{i=1}^{29}\left(T_{v i s, i}\right) \cdot W_{i}
\end{aligned}
$$

Direct solar incidence radiation is set at the fixed number of $783 \mathrm{~W} / \mathrm{m}^{2}$, according to NFRC 100

## AWNINGS GEOMETRY AND MODELING PARAMETERS

Awnings geometry is shown in Figure 5. Parameters indicated in the figure are userentered values.


Figure 5: Definition of Various Input Parameters
$\mathrm{W}=$ Window width
$\mathrm{H}=$ Window height
$\mathrm{L}=$ Awning length
$\mathrm{D}\llcorner=$ Left awning offset
$D_{R}=$ Right awning offset
$\mathrm{D}_{\mathrm{H}}=$ Top awning offset
$\alpha=$ Awnings angle from vertical ( $90^{\circ}$ means horizontal awning)

Solar-optical modeling of awnings in WINDOW is done by Radiance ray-tracing software tool. Frads (LBNL 2019) module of Radiance (Ward and Shakespeare 1998.) performs forward ray-tracing calculation for non-coplanar surfaces to produce BSDF of the awning shade.
In Frads input, these parameters are translated into XYZ coordinates. Each corner of the baseline window and each corner of the awning rectangle are denoted by XYZ coordinates.


$$
\mathrm{X}_{1}, \mathrm{Y}_{1}, \mathrm{Z}_{1} \quad \mathrm{X}_{4}, \mathrm{Y}_{4}, \mathrm{Z}_{4}
$$

Figure 6: Coordinate numbering for the window and awning polygons
Frads inputs for the window and awning are provided in window.rad and awning.rad files:

## Window.rad definition:

This file contains window polygon information. No material definition is needed, since it is only used for ray generation surface. Below is expected content of this file:

```
geometry definition
void polygon window1 # modifier type identifier
string argument, always zero in our case
integer argument, always zero
number of values that follows, 12 = number of vertices * 3
x1 y1 z1 # First vertex
x2 y2 z2 # Second vertex
x3 y3 z3 # Third vertex
x4 y4 z4 # Fourth vertex
```


## window.rad example:

```
void polygon window1
0
0
12
0,0,0;
0,H,0;
W, H, O;
W,0,0
```


## Awning.rad definition

This file contains awnings polygon information and material definition as a link to xml file. Below is expected content of this file:

```
modifier type identifier # material definition, can be
substituted with other Radiance material
thickness, BSDF.xml file, up vector (0 1 0, this vector can't
be the same as awning surface normal defined below
always zero
always zero
geometry definition
#modifier type identifier
string argument, always zero in our case
integer argument, always zero
number of values that follows, 12 = number of vertices * 3
x1 y1 z1
x2 y2 z2
x3 y3 z3
x4 y4 z4
```

awning.rad example:

```
6 0 C:\Users\Public\LBNL\WINDOW7.8\AwningBSDF\Material.xml 0 0 1
0
0
fabric polygon awning
 0
 0
 1 2
-D, H+DH, 0;
-D
W+D
W+D
```

Per AERC rules, the following data is used for input parameters:
$W=1.2 \mathrm{~m}$
$H=1.5 \mathrm{~m}$
$D_{L}=0$
$D_{R}=0$
$\mathrm{D}_{\mathrm{H}}=0$
$\alpha$ and $L$ are defined for four distinct cases shown in Figure 7 and Table 4.


Figure 7: Awnings Geometry and Positions
Table 4. Dimensions for Different Awning Geometries

	Geometry Set $1(1 A+1 B)$   Typical Operable Drop-arm Window Awnings   Fully deployed (1A)   and midpoint deployed (1B)		Geometry Set 2 (2A+2B)   Typical Operable Folding-arm Window Awnings   Fully deployed (2A)   and midpoint deployed (2B)	
Fixed awnings might have any one of these four geometries.				
	Position 1A	Position 1B	Position 2A	Position 2B
Angle $\alpha$	$8^{\circ}$	$45^{\circ}$	$85^{\circ}$	$85^{\circ}$
Cover length L	1500 mm	1060 mm	1506 mm	753 mm
Projection $x$-axis	$0.14 \times \mathrm{H}$	$0.50 \times \mathrm{H}$	$1.00 \times \mathrm{H}$	$0.50 \times \mathrm{H}$
Projection Drop y-axis	$0.99 \times \mathrm{H}$	$0.50 \times \mathrm{H}$	$0.087 \times \mathrm{H}$	$0.043 \times \mathrm{H}$


Fabric width	$1.00 \times \mathrm{W}$	$1.00 \times \mathrm{W}$	$1.00 \times \mathrm{W}$	$1.00 \times \mathrm{W}$
$\mathrm{H}=$ window recess height $(1500 \mathrm{~mm}) \quad \mathrm{W}=$ window recess width $(1200 \mathrm{~mm})$				

## EP CALCULATION

EP is calculated based on the new schedule for awnings. There are three distinct schedules, based on the awnings type:
In the tables below

- $\mathrm{M}=$ Morning
- A = Afternoon
- $\mathrm{N}=$ Night

Table 5. permanently-installed, fixed awning

Minneapolis	Cooling Weekday			Cooling Weekend			Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	$N$	M	A	N	M	A	N
Retracted - no shading												
Deployed - each of $1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~A}, 2 \mathrm{~B}$	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Houston	Cooling Weekday			Cooling Weekend			Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	N	M	A	N	M	A	N
Retracted - no shading												
Deployed - each of 1A, 1B, 2A, 2B	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00

Table 6. seasonally-installed fixed awning

Minneapolis	Cooling Weekday			Cooling Weekend			Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	N	M	A	N	M	A	N
Retracted - no shading							1.00	1.00	1.00	1.00	1.00	1.00
Deployed - each of 1A, 1B, 2A, 2B	1.00	1.00	1.00	1.00	1.00	1.00						
Houston	Cooling Weekday			Cooling Weekend			Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	N	M	A	N	M	A	N
Retracted - no shading							1.00	1.00	1.00	1.00	1.00	1.00
Deployed - each of $1 \mathrm{~A}, 1 \mathrm{~B}, 2 \mathrm{~A}, 2 \mathrm{~B}$	1.00	1.00	1.00	1.00	1.00	1.00						

Table 7. operable awning:

Minneapolis	Cooling Weekday			Cooling Weekend			Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	N	M	A	N	M	A	N
Retracted - no shading	0.30	0.20	0.30	0.40	0.30	0.40	0.75	0.65	0.75	0.75	0.65	0.75
Half-deployed each of 1B, 2B	0.60	0.60	0.60	0.60	0.60	0.60	0.25	0.35	0.25	0.25	0.35	0.25
$\begin{aligned} & \text { Deployed - each of } \\ & 1 A, 2 A \end{aligned}$	0.10	0.20	0.10	0.00	0.10	0.00	0.0	0.0	0.0	0.0	0.0	0.0
Houston	Cooling Weekday			Cooling Weekend			Heating Weekday			Heating Weekend		
Deployment	M	A	N	M	A	N	M	A	N	M	A	N
Retracted - no shading	0.30	0.20	0.30	0.30	0.20	0.30	0.65	0.55	0.65	0.65	0.55	0.65
Half- deployed - each of 1B, 2B	0.60	0.60	0.60	0.60	0.60	0.60	0.35	0.45	0.35	0.35	0.40	0.35
Deployed - each of 1A, 2A	0.10	0.20	0.10	0.10	0.20	0.10	0.00	0.05	0.00	0.00	0.05	0.00

For permanently-installed fixed awnings, and seasonally-installed fixed awnings each of the four geometries, 1A, 1B, 2A, and 2B, shown in Figure 7, will be considered separately (separate product with individual rating, SHGC, VT). When calculating EP rating indices, for permanent and seasonal schedules each of the four positions is modeled using schedules in Table 5 for permanently-installed fixed awnings (always deployed) and Table 6 for seasonally-installed fixed awnings (no awning in the Winter and deployed in the Summer).

For operable awnings Table 7 lists 3 positions, retracted (no shading), half-deployed and deployed, resulting in two rated products; Geometry 1 and Geometry 2 with retracted (no awning), Half-deployed (1B for Geometry 1, and 2B for Geometry 2) and deployed (1A for Geometry 1, and 2A for Geometry 2). For each geometry parent-child relationship will be established, where parent record will show EP, while child records will show component properties (e.g., U, SHGC, VT, AL), similar to how results are shown for venetian blinds.

## Naming Convention:

Naming of individual products, required for properly importing and calculating EP is listed in Table 8. Each of the fixed and seasonal products are calculated and shown individually. For operable awnings, Geometry 1 and Geometry 2 would be parent records with child records named as per Table 8.
Table 8. Naming of records

Geometry		Fixed (AY)	Fixed Seasonal   (AS)	Operable (AO)
1	1 A	AY1A	AS1A	AO1A, AO1B
	1 B	AY1B	AS1B	
2	2 A	AY2A	AS2A	AO2A, AO2B
	$2 B$	AY2B	AS2B	

Example of the naming for permanently-installed fixed awning:
Awning 1A Permanent - Dark::AY1A: O: : BW-B
Where, "O" means Outdoor position, and "BW-B" means Baseline Window B.
Example of the naming for Seasonally-installed fixed awning:
Awning 1A Seasonal - Dark::AS1A::O::BW-B

## Example of the naming for Operable awning:

Awning 1A Operable - Dark::AO1A::O::BW-B

## REFERENCES:

ASHRAE. 2017. ASHRAE Handbook of Fundamentals. American Society for Heating, Refrigeration and Air-Conditioning Engineers. Atlanta, GA. 2017.
Goudey, H.; Curcija, D.C.; Le, Q.V.; and Hart, R.G. 2012. "Visible Transmittance of Tubular Daylighting Devices." LBNL Technical Report. March 26, 2012
Klems, J.H. 1994a. A New Method for Predicting the Solar Heat Gain of Complex Fenestration Systems. Part I: Overview and Derivation of the Matrix Layer Calculation. ASHRAE Transactions. V. 100, Pt. 1. American Society for Heating, Refrigeration and Air-Conditioning Engineers. Atlanta, GA. January 1994.
Klems, J.H. 1994b. A New Method for Predicting the Solar Heat Gain of Complex Fenestration Systems. Part II: Detailed Description of the Matrix Layer Calculation. ASHRAE Transactions. V. 100, Pt. 1. American Society for Heating, Refrigeration and Air-Conditioning Engineers. Atlanta, GA. January 1994.
McCluney, W.R.; and duPont, W. 2010. "Final Report: Projecting Awning Shading Rating Strategies Feasibility Study." Report to the National Fenestration Rating Council. April 4, 2010.
Wang, T.; Ward, G.L.; and Lee, E.S. 2018. "Efficient modeling of optically-complex, non-coplanar exterior shading: Validation of matrix algebraic methods." Energy and Buildings. 174 (2018) 464-483.
Ward., G.L.; and Shakespeare, R.A. 1998. Rendering with Radiance: The Art and Science of Lighting Visualization. Morgan Kaufmann, San Francisco, 1998.
LBNL. 2019. "Frads: Python3-based Higher-level Abstraction of Radiance Commandline Workflow for Multi-phase Matrix-based Simulation and Beyond. https://github.com/LBNL-ETA/frads.

## ACKNOWLEDGEMENTS

The authors gratefully acknowledge the comments and feedback provided by the AERC Technical Committee and Awnings work group. This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Building Technologies Program, of the U.S. Department of Energy under Contract No. DE-AC0205CH11231.


[^0]:    16, for baseline window run, this field keeps autosize, for other runs, this field replaces with 0.000009

